142 6 / Multilayer Perceptrons

Each hidden or output neuron of a multilayer perceptron is designed to perform two
computations:

1. The computation of the function signal appearing at the output of a neuron, which
is expressed as a continuous nonlinear function of the input signals and synaptic
weights associated with that neuron

2. The computation of an instantaneous estimate of the gradient vector (i.e., the gradi-
ents of the error surface with respect to the weights connected to the inputs of a
neuron), which is needed for the backward pass through the network

The derivation of the back-propagation algorithm is rather involved. To ease the
mathematical burden involved in this derivation, we first present a summary of the notations
used in the derivation.

Notation

» The indices i, j, and k refer to different neurons in the network; with signals propagat-
ing through the network from left to right, neuron j lies in a layer to the right of
neuron i, and neuron k lies in a layer to the right of neuron j when neuron j is a
hidden unit.

a The iteration n refers to the nth training pattern (example) presented to the network.

» The symbol é(n) refers to the instantaneous sum of error squares at iteration n. The
average of é(n) over all values of n (i.e., the entire training set) yields the average
squared error €,,.

= The symbol e;(n) refers to the error signal at the output of neuron j for iteration n.

= The symbol d;(n) refers to the desired response for neuron j and is used to compute
ei(n).

» The symbol y;(n) refers to the function signal appearing at the output of neuron jat
iteration n.

= The symbol w;(n) denotes the synaptic weight connecting the output of neuron i to
the input of neuron j at iteration n. The correction applied to this weight at iteration
n is denoted by Aw;(n).

s The net internal activity level of neuron j at iteration n is denoted by v;(n); it
constitutes the signal applied to the nonlinearity associated with neuron j.

= The activation function describing the input—output functional relationship of the
nonlinearity associated with neuron j is denoted by @;(*).

= The threshold applied to neuron j is denoted by 6;; its effect is represented by a
synapse of weight wj; = 6; connected to a fixed input equal to —1.

u The ith element of the input vector (pattern) is denoted by xi(n).
a The kth element of the overall output vector (pattern) is denoted by ox(n).

s The learning-rate parameter is denoted by 7.

6.3 Derivation of the Back-Propagation Algorithm

The error signal at the output of neuron j at iteration n (i.e., presentation of the nth training
pattern) is defined by

e;(n) = di(n) — y/n), neuron j is an output node 6.1)

6.3 / Derivation of the Back-Propagation Algorithm 143

We define the instantaneous value of the squared error for neuron j as 3e}(n). Correspond-
ingly, the instantaneous value é(n) of the sum of squared errors is obtained by summing
4e}(n) over all neurons in the output layer; these are the only ‘‘visible’’ neurons for which
error signals can be calculated. The instantaneous sum of squared errors of the network
is thus written as

E(n) =

N | —

jezce}(n) (6.2)

where the set C includes all the neurons in the output layer of the network. Let N denote
the total number of patterns (examples) contained in the training set. The average squared
error is obtained by summing %(n) over all n and then normalizing with respect to the
set size N, as shown by

=z

= é(n) (6.3)

2|~

The instantaneous sum of error squares %(n), and therefore the average squared error €,,,
is a function of all the free parameters (i.e., synaptic weights and thresholds) of the
network. For a given training set, €,, represents the cost function as the measure of training
set learning performance. The objective of the learning process is to adjust the free
parameters of the network so as to minimize €,,. To do this minimization we use an
approximation similar in rationale to that we used for the derivation of the LMS algorithm
in Chapter 5. Specifically, we consider a simple method of training in which the weights
are updated on a pattern-by-pattern basis. The adjustments to the weights are made in
accordance with the respective errors computed for each pattern presented to the network.
The arithmetic average of these individual weight changes over the training set is therefore
an estimate of the true change that would result from modifying the weights based on
minimizing the cost function é,, over the entire training set.

Consider then Fig. 6.3, which depicts neuron j being fed by a set of function signals
produced by a layer of neurons to its left. The net internal activity level v(n) produced

Neuron j
A

)’():_1

dfn)

V.l—

o €(n)

Y

¥;(n)

FIGURE 6.3 Signal-flow graph highlighting the details of output neuron j.

144 6 / Multilayer Perceptrons

at the input of the nonlinearity associated with neuron j is therefore

vi(n) = g w;i(n)yi(n) (6.4)

where p is the total number of inputs (excluding the threshold) applied to neuron j. The
synaptic weight w;, (corresponding to the fixed input y, = —1) equals the threshold 6,
applied to neuron j. Hence the function signal y;(n) appearing at the output of neuron j
at iteration n is

y(n) = ¢v;(n) (6.5)

In a manner similar to the LMS algorithm, the back-propagation algorithm applies a
correction Aw(n) to the synaptic weight w;(n), which is proportional to the instantaneous
gradient 9%(n)/dw;(n). According to the chain rule, we may express this gradient as
follows:

3€(n) _ 3€(n) 9e;(n) dy;(n) ov,(n)
dwsi(n) de;(n) dy;(n) dv;(n) dw;(n)

(6.6)

The gradient dé(n)/dw;(n) represents a sensitivity factor, determining the direction of
search in weight space for the synaptic weight w;.
Differentiating both sides of Eq. (6.2) with respect to ¢;(n), we get

0%(n) _
e) ej(n) 6.7)
Differentiating both sides of Eq. (6.1) with respect to y;(n), we get
6e,-(n)
o 6.8
dy;(n) (2
Next, differentiating Eq. (6.5) with respect to v,(n), we get
ay;(n) R
30,(n) = qo,(v,(n)) (6.9)

where the use of prime (on the right-hand side) signifies differentiation with respect to
the argument. Finally, differentiating Eq. (6.4) with respect to w;(n) yields

avj(n) _
awﬁ(n) - yi(n) (6.10)
Hence, the use of Egs. (6.7) to (6.10) in (6.6) yields
3% i
—_'aw,-,.((r:l)) = —¢(m)g] (v,(m)yi(n) (6.11)

The correction Aw;(n) applied to wj(n) is defined by the delta rule

9%(n)
(n) = —m————= 6.12
Aw;(n) n awy(n) (6.12)
where 7 is a constant that determines the rate of learning; it is called the learning-rate
parameter of the back-propagation algorithm. The use of the minus sign in Eq. (6.12)
accounts for gradient descent in weight space. Accordingly, the use of Eq. (6.11) in (6.12)
yields

Aw;i(n) = n6(n)yi(n) (6.13)

6.3 / Derivation of the Back-Propagation Algorithm 145
where the local gradient §(n) is itself defined by

_ 0%(n) 9e;(n) dy,(n)
de;(n) dy,(n) dv;(n)

= ¢;(n)g; (v;(n)) (6.14)

The local gradient points to required changes in synaptic weights. According to Eq. (6.14),
the local gradient &(n) for output neuron j is equal to the product of the corresponding
error signal ¢;(n) and the derivative ¢/(v;(n)) of the associated activation function.

From Egs. (6.13) and (6.14) we note that a key factor involved in the calculation of
the weight adjustment Aw;(n) is the error signal e;(n) at the output of neuron j. In this
context, we may identify two distinct cases, depending on where in the network neuron
J is located. In case I, neuron j is an output node. This case is simple to handle, because
each output node of the network is supplied with a desired response of its own, making
it a straightforward matter to calculate the associated error signal. In case II, neuron j is
a hidden node. Even though hidden neurons are not directly accessible, they share responsi-
bility for any error made at the output of the network. The question, however, is to know
how to penalize or reward hidden neurons for their share of the responsibility. This
problem is indeed the credit-assignment problem considered in Section 2.6. It is solved
in an elegant fashion by back-propagating the error signals through the network.

In the sequel, cases I and II are considered in turn.

o(n) =

Case I: Neuron jIs an Output Node

When neuron j is located in the output layer of the network, it would be supplied with a
desired response of its own. Hence we may use Eq. (6.1) to compute the error signal e;(n)
associated with this neuron; see Fig. 6.3. Having determined ¢;(n), it is a straightforward
matter to compute the local gradient 8;(n) using Eq. (6.14).

Case lI: Neuron j Is a Hidden Node

When neuron j is located in a hidden layer of the network, there is no specified desired
response for that neuron. Accordingly, the error signal for a hidden neuron would have
to be determined recursively in terms of the error signals of all the neurons to which that
hidden neuron is directly connected,; this is where the development of the back-propagation
algorithm gets complicated. Consider the situation depicted in Fig. 6.4, which depicts
neuron j as a hidden node of the network. According to Eq. (6.14), we may redefine the
local gradient §(n) for hidden neuron j as

~ 9%(n) 9y,(n)
ady;(n) dv;(n)

_ 9é(n)
ay;(n)

where, in the second line, we have made use of Eq. (6.9). To calculate the partial derivative
dé(n)/dy;(n), we may proceed as follows. From Fig. 6.4 we see that

6(n) =

@ (v;(n)), neuron j is hidden (6.15)

€(n) = % 2 ei(n), neuron k is an output node (6.16)
keC

which is a rewrite of Eq. (6.2) except for the use of index k in place of index j. We have
done so in order to avoid confusion with the use of index j that refers to a hidden neuron

146 6/ Mdﬁa&gr Perceptrons

Neuron j Neuron k
r e —\r =50y

y0=_1

Wo(n) = G(n)

o (m) () yn)

v,(n) <p£~) y,(nt

W

ij:(") il

FIGURE 6.4 Signal-flow graph highlighting the details of output neuron k connected to
hidden neuron ;.

under case II. In any event, differentiating Eq. (6.16) with respect to the function signal
yi(n), we get
3é(n) =3, dey(n)
) T ay(n)

Next, we use the chain rule for the partial derivative de(n)/dy;(n), and thus rewrite Eq.
(6.17) in the equivalent form

(6.17)

€ (n) de(n) dvi(n)
—== > eln —_— 6.18)
o~ % a0y oy :
However, from Fig. 6.4, we note that
ex(n) = dy(n) — Yi(n)
= di(n) — p(vi(n)), neuron k is an output node (6.19)
Hence
de(n)
oy~ PHm) (6.20)
We also note from Fig. 6.4 that for neuron k, the net internal activity level is
q
Ui(n) = 2 wiy(n)y,(n) (6.21)
=

where ¢ is the total number of inputs (excluding the threshold) applied to neuron k. Here
again, the synaptic weight Wio(n) is equal to the threshold 0(n) applied to neuron k, and
the corresponding input y, is fixed at the value — L. In any event, differentiating Eq. (6.21)
with respect to y,(n) yields

dv(n)

——ay,(n) = wy(n) (6.22)

6.3 / Derivation of the Back-Propagation Algorithm 147

Thus, using Egs. (6.20) and (6.22) in (6.18), we get the desired partial derivative:
a8(n) _

)~ 2)

= —Z S(mywy(n) (6.23)

where, in the second line, we have used the definition of the local gradient &(n) given
in Eq. (6.14) with the index k substituted for j.

Finally, using Eq. (6.23) in (6.15), we get the local gradient &;(n) for hidden neuron
j, after rearranging terms, as follows:

&(n) = @ (v,-(n)) Z S(n)wy(n), neuron j is hidden (6.24)

The factor ¢(v;(n)) involved in the computation of the local gradient g(n) in Eq.
(6.24) depends solely on the activation function associated with hidden neuron j. The
remaining factor involved in this computation, namely, the summation over k, depends
on two sets of terms. The first set of terms, the &(n), requires knowledge of the error
signals e;(n), for all those neurons that lie in the layer to the immediate right of hidden
neuron j, and that are directly connected to neuron j; see Fig. 6.4. The second set of
terms, the w,;(n), consists of the synaptic weights associated with these connections.

We may now summarize the relations that we have derived for the back-propagation
algorithm. First, the correction Aw(n) applied to the synaptic weight connecting neuron
i to neuron j is defined by the delta rule:

Weight learning- local input signal
correction | = | rate parameter | - | gradient | - | of neuronj (6.25)
AWj,'(n) n 5]("))’i(")

Second, the local gradient 8(n) depends on whether neuron j is an output node or a hidden
node:

1. If neuron j is an output node, &(n) equals the product of the derivative ¢/ (v;(m)
and the error signal e;(n), both of which are associated with neuron Jj; see Eq. (6.14).

2. If neuron j is a hidden node, &(n) equals the product of the associated derivative
@/(v;(n)) and the weighted sum of the &’s computed for the neurons in the next
hidden or output layer that are connected to neuron j; see Eq. (6.24).

The Two Passes of Computation

In the application of the back-propagation algorithm, two distinct passes of computation
may be distinguished. The first pass is referred to as the forward pass, and the second
one as the backward pass. ’

In the forward pass the synaptic weights remain unaltered throughout the network,
and the function signals of the network are computed on a neuron-by-neuron basis.
Specifically, the function signal appearing at the output of neuron j is computed as

yi(n) = @(v,(n)) (6.26)
where v;(n) is the net internal activity level of neuron j, defined by

P
vi(n) = Zo wi(n) yi(n) (6.27)

where p is the total number of inputs (excluding the threshold) applied to neuron j, and
wj(n) is the synaptic weight connecting neuron i to neuron j, and y;(n) is the input signal

