

Segmentación y Descripción de Imágenes

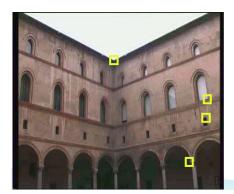
DETECCION DE ESQUINAS

prb@2007

Imágenes: Gonzalez&Wood

Extracción de esquinas

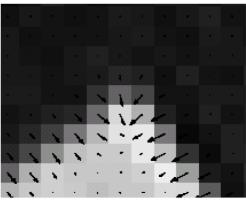
Nivel semántico: intersección de dos bordes rectos → sólo en imágenes ideales.



prb@2007

Imágenes: Gonzalez&Wood

¿Qué caracteriza a una esquina?



Se observa que en los "bordes" el gradiente aumenta... ¿pero qué ocurre en la esquina?

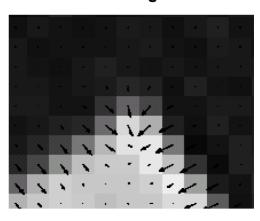
prb@2007

Imágenes: Gonzalez&Wood

5

Extracción de esquinas

Una esquina se caracteriza por un abrupto cambio en la dirección del gradiente.



prb@2007

Imágenes: Gonzalez&Wood

•

Dirección (-Iy, Ix) norma (Ix, Iy)

Sea

prb@2007

I(x,y) = imagen

 $I_x(x,y), I_y(x,y) = Imágenes "gradientes" en eje <math>x e y$ (derivada en x e y)

Vg=(Ix, Iy) ... el vector gradiente

Vmin=(-Iy, Ix) ... el vector con mínima variación (borde)

 θ = $tan^{-1}(I_y/I_x)$ = razón de gradientes... dirección del gradiente... $\theta_x y \theta_y$ las derivadas de la dir. del gradiente... entonces:

$$K = (\theta_x, \theta_y) \cdot Vminm > U$$

K representa la variación de la dirección del gradiente en la dirección de Vmin.

Extracción de esquinas

$$\frac{\partial \tan^{-1}(u)}{\partial x} = \frac{1}{u^2 + 1}$$
$$\partial \tan^{-1} f(x) = 1 \qquad \partial f$$

$$\frac{\partial \tan^{-1} f(x)}{\partial x} = \frac{1}{1 + f(x)^2} \cdot \frac{\partial f(x)}{\partial x}$$

$$\frac{\partial \tan^{-1} \left(\frac{I_{y}}{I_{x}}\right)}{\partial x} = \frac{1}{\frac{I_{y}^{2}}{I_{x}^{2} + 1}} \cdot \frac{I_{x}I_{xy} - I_{y}I_{xx}}{I_{x}^{2}} = \frac{I_{x}I_{xy} - I_{y}I_{xx}}{I_{x}^{2} + I_{y}^{2}}$$

$$\frac{\partial \tan^{-1} \left(\frac{I_{y}}{I_{x}}\right)}{\partial y} = \frac{1}{\frac{I_{y}^{2}}{I_{x}^{2}} + 1} \cdot \frac{I_{x}I_{yy} - I_{y}I_{yx}}{I_{x}^{2}} = \frac{I_{x}I_{yy} - I_{y}I_{yx}}{I_{x}^{2} + I_{y}^{2}}$$

$$\begin{split} &= \left(\frac{I_{x}I_{xy} - I_{y}I_{xx}}{I_{x}^{2} + I_{y}^{2}}, \frac{I_{x}I_{yy} - I_{y}I_{yx}}{I_{x}^{2} + I_{y}^{2}}\right) \cdot \frac{\left(-I_{y}, I_{x}\right)}{\sqrt{I_{x}^{2} + I_{y}^{2}}} \\ &= \left(\frac{I_{x}I_{y}I_{xy} - I_{y}^{2}I_{xx}}{I_{x}^{2} + I_{y}^{2}} + \frac{I_{x}^{2}I_{yy} - I_{x}I_{y}I_{yx}}{I_{x}^{2} + I_{y}^{2}}\right) \frac{1}{\sqrt{I_{x}^{2} + I_{y}^{2}}} \\ &= \frac{I_{x}^{2}I_{yy} + I_{y}^{2}I_{xx} - 2I_{x}I_{y}I_{yx}}{\left(I_{x}^{2} + I_{y}^{2}\right)^{3/2}} \end{split}$$

prb@2007

Imágenes: Gonzalez&Wood

9

Extracción de esquinas 1

Este método habitual consiste en el uso de derivadas de segundo orden.

Consiste en la medición de la razón de cambio de la dirección del gradiente respecto de la magnitud del gradiente. (Kitchen&Rosenfeld)

$$E = \frac{f_{xx}f_y^2 + f_{yy}f_x^2 - 2f_{xy}f_xf_y}{(f_x^2 + f_y^2)^{3/2}} \ge U$$

prb@2007

Imágenes: Gonzalez&Wood

Las operaciones se realizan sobre cada píxel. Para el calculo de las derivadas se utiliza la convolución con los siguientes filtros:

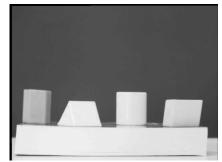
$$f_x = \frac{\partial f}{\partial x} = \begin{bmatrix} -1 & 0 & 1\\ -1 & 0 & 1\\ -1 & 0 & 1 \end{bmatrix}$$

$$f_{x} = \frac{\partial f}{\partial x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{y} = \frac{\partial f}{\partial y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$
 $f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$ $f_{xy} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$

prb@2007

Extracción de Esquinas 1



prb@2007

Imágenes: Gonzalez&Wood

Algoritmo

prb@2007

Imágenes: Gonzalez&Wood

13

Extracción de esquinas 2

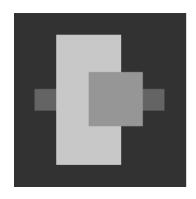
Otro método consiste en medir la curvatura Gaussiana de una determinada superficie (imagen).

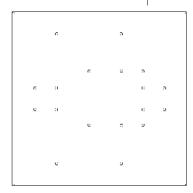
La curvatura K se expresa en términos de derivadas parciales (Lipschutz):

$$K = \frac{f_{xx}f_{yy} - f_{xy}^{2}}{(1 + f_{x}^{2} + f_{y}^{2})^{2}} \ge U$$

prb@2007

Imágenes: Gonzalez&Wood





prb@2007

Imágenes: Gonzalez&Wood

15

Extracción de esquinas 3

Finalmente se pueden mencionar los métodos clásicos de detección de esquinas específicas. Consisten simplemente en la convolución con núcleos que "representen" la esquina buscada:

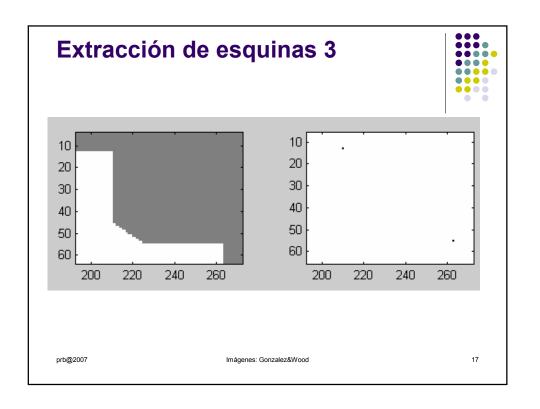
$$E_{\text{sup_der}} = \begin{bmatrix} -4 & 5 & 5 \\ -4 & 5 & 5 \\ -4 & -4 & -4 \end{bmatrix} \qquad E_{\text{inf}} = \begin{bmatrix} 5 & 5 & 5 \\ -4 & 5 & -4 \\ -4 & -4 & -4 \end{bmatrix}$$

$$E_{\rm inf} = \begin{vmatrix} 5 & 5 & 5 \\ -4 & 5 & -4 \\ -4 & -4 & -4 \end{vmatrix}$$

Son ocho posible rotaciones del núcleo.

prb@2007

Imágenes: Gonzalez&Wood



Algoritmo map1=(0:255)/255; map=[map1' map1' map1']; COLORMAP (map); A1=double(imread('figura.bmp')); subplot(2,2,1); image(A1); D1=[-4 5 5; -4 5 5; -4 -4 -4]; E=conv2(A1,D1,'same'); E=255*(E/max(max(E)));E=255* (E<220); subplot(2,2,2);image(E); prb@2007 Imágenes: Gonzalez&Wood 18

Segmentación y Descripción de Imágenes

DETECCION DE PUNTOS DE INTERÉS

prb@2007

Imágenes: Gonzalez&Wood

19

Extracción de puntos de interés

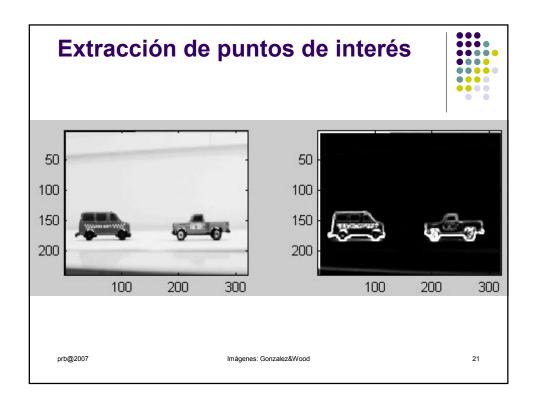
Los puntos de interés o zonas de interés, generalmente se delimitan por grupos de píxeles con una gran varianza.

$$VAR(x, y) = \sum_{i, j \in \text{vecinos}} [I(x, y) - I(x+i, y+j)]^2$$

El resultado se puede binarizar o "amplificar" para filtrar los "puntos de interés".

prb@2007

Imágenes: Gonzalez&Wood



```
Algoritmo
  map1=(0:255)/255;
  map=[map1' map1' map1']; COLORMAP(map);
  A1=double(imread('autos.bmp'));
  subplot(2,2,1);image(A1);
  [H,W]=size(A1);
  V=A1;
  D=2;
  for x=1+D:W-D
     for y=1+D:H-D
        var=0;
        for xx=-D:D
           for yy=-D:D
             var=var+(A1(y,x)-A1(y+yy,x+xx))^2;
        end;
        V(y,x) = var;
     end;
  end;
  V=V-min(min(V)); V=255*(V/max(max(V))); %normaliza
  V=V*6; %amplifica
  subplot(2,2,2); image(V);
                                                                22
```

Segmentación y Descripción de Imágenes

DETECCION DE LINEAS

prb@2007

Imágenes: Gonzalez&Wood

23

Descripción de Líneas...

Generalmente en una imagen de bordes se desea "filtrar" ciertos bordes especiales, por ejemplo, dejar sólo las líneas rectas

prb@2007

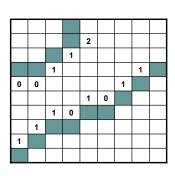
Imágenes: Gonzalez&Wood

1. Códigos de Cadena

Un método corresponde a buscar "códigos de cadenas". Corresponde a etiquetar los puntos de un borde, con el ángulo (índice) de su vecino siguiente, siguiendo el sentido del borde.

3	2	1
4		0
5	6	7

1. Códigos de Cadena



prb@2007

Imágenes: Gonzalez&Wood

25

Para cada borde o segmento, luego de etiquetar con el número de vecino, se determina un histograma de los índices. NO SI

Si en dicho histograma existe algún índice que supere notablemente al resto, se puede considerar una recta.

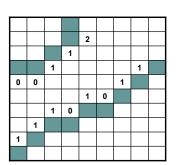
prb@2007

Imágenes: Gonzalez&Wood

1. Códigos de Cadena

Algunas condiciones:

- Si el histograma tiene valores en más de 4 índices → no es recta
- 2.- Si el histograma tiene valores sólo de 1 índice → es una recta pura.
- 3.- Si el hist. tiene 2 barras. Significativas:
- Si son adyacentes, pero una supera notoriamente a la otra → es recta.
- Si no son adyacentes, → no es recta.



prb@2007

Imágenes: Gonzalez&Wood

27

2. Ajuste de líneas: mínimos cuadrados

Para un conjunto de puntos se desea encontrar **a** y **b** tal que la siguiente expresión sea mínima:

$$\sum_{i=1}^{n} [(b + ax_i) - y_i]^2$$

Una solución para este problema clásico es derivando e igualando a cero para buscar el mínimo.

prb@2007

Imágenes: Gonzalez&Wood

2. Ajuste de líneas: mínimos cuadrados

$$\sum_{i=1}^{n} [(b+ax_i) - y_i]^2 = \sum_{i=1}^{n} [(b+ax_i)^2 - 2(b+ax_i)y_i + y_i^2]$$

$$= \sum_{i=1}^{n} [b^2 + 2abx_i + a^2x_i^2 - 2by_i - 2ax_iy_i + y_i^2]$$

derivando parcialmente...

$$\frac{\partial}{\partial a} = 2b\sum_{i=1}^{n} x_i + 2a\sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} x_i y_i$$
$$\frac{\partial}{\partial b} = 2b \cdot n + 2a\sum_{i=1}^{n} x_i - 2\sum_{i=1}^{n} y_i$$

prb@2007

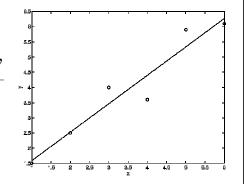
Imágenes: Gonzalez&Wood

29

2. Ajuste de líneas: mínimos cuadrados

despejando:

$$a = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$
$$b = \frac{\sum y - a\sum x}{n}$$



prb@2007

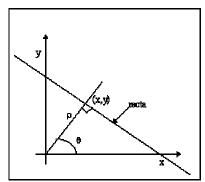
Imágenes: Gonzalez&Wood

3. Transformada Hough

La transformada Hough se utiliza para el enlace de puntos de borde y la extracción de rectas. Implica la transformación de coordenadas Cartesianas a coordenadas polares de la forma:

$$\rho = x\cos\theta + y\sin\theta$$

Los dos inconvenientes principales de esta transformada son que no es capaz de encontrar los extremos de la recta, y que la transformada ha sido patentada, por lo que su uso en algún proyecto requiere el pago de royalties a la familia Hough.



prb@2007

Imágenes: Gonzalez&Wood

31

3. Transformada Hough

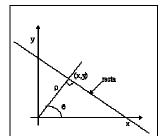
Desarrollo:

Sea: $(x_1, y_1)(x_2, y_2)$

Recta:

$$y = ax + b$$

Donde:



$$a = \frac{(y_2 - y_1)}{(x_2 - x_1)}, \qquad b = y_1 - \frac{(y_2 - y_1)}{(x_2 - x_1)}x_1$$

Para obtener el punto x_0,y_0 , se puede minimizar la función de distancia desde el origen hasta los puntos de la recta.

prb@2007

Imágenes: Gonzalez&Wood

3. Transformada Hough

Desarrollo:

Distancia al origen:

$$d = \sqrt{(x-0)^2 + (y-0)^2}$$

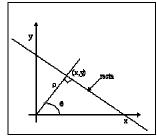
$$d' = x^2 + (ax + b)^2 = x^2 + a^2x^2 + 2abx + b^2$$

Derivando:

$$2x + 2xa^2 + 2ab = 0$$

Entonces:

$$x_0 = \frac{-ab}{1+a^2}, \quad y_0 = b - \frac{a^2b}{1+a^2}$$



prb@2007

Imágenes: Gonzalez&Wood

33

3. Transformada Hough

Desarrollo:

Ecuación polar:

$$\rho = \sqrt{x_0 + y_0}, \quad \theta = \arctan(y_0 / x_0)$$

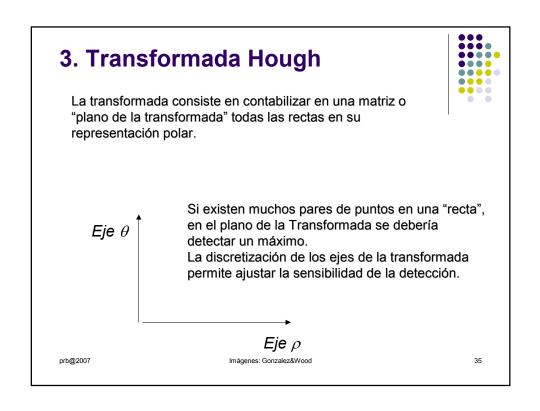
Eje θ

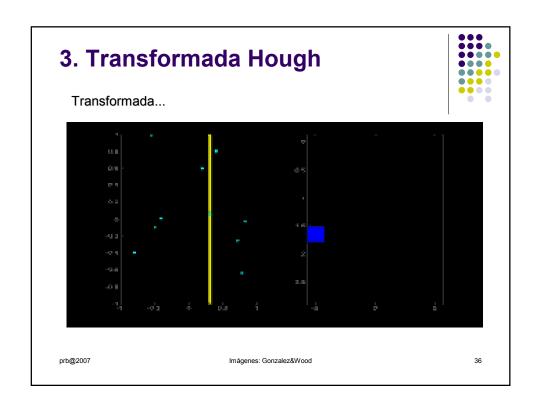
Plano de la Transformada

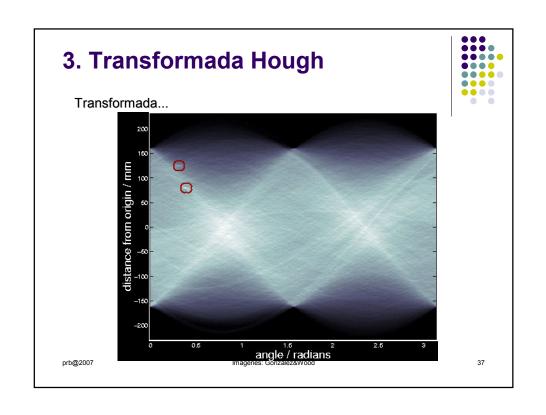
Eje ρ

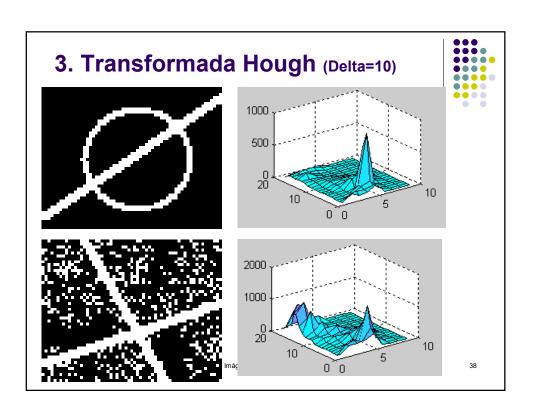
prb@2007

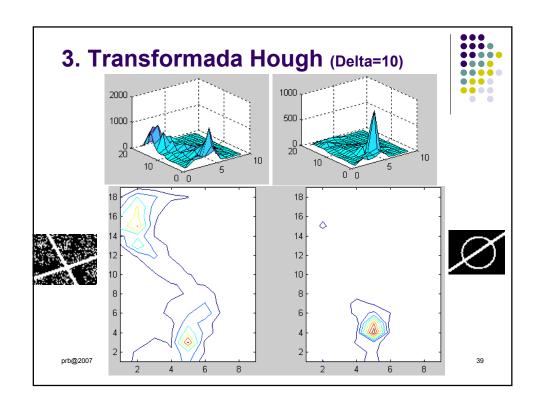
Imágenes: Gonzalez&Wood

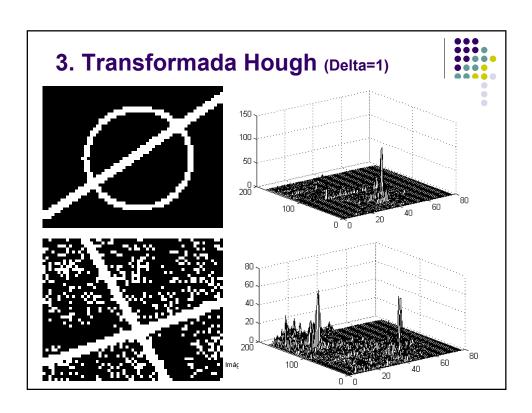


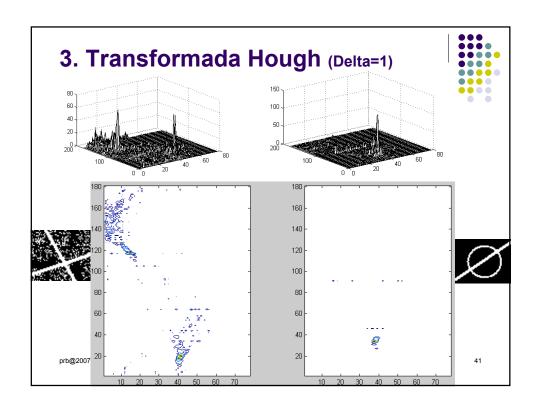












```
3. Algoritmo
for f=1:4:nf
for c=1:4:nc
if IM(f,c)==1
 for ff=1:4:nf
  for cc=1:4:nc
          if ff~=f & cc~=c & IM(ff,cc)==1
                   %ec recta
                   if cc==c, x0=c;y0=0;
                   else
                            a=(ff-f)/(cc-c);
                           b=ff-a*cc;
                           x0=-a*b/(1+a*a);
                           y0=b-a*a*b/(1+a*a);
                   end;
                  r=sqrt(x0^2+y0^2)+1;
                  if x0==0, ang=90;else ang=atan(y0/x0)*180/pi+90;end;
                  ang=round(ang/DELTA)+1;
                  r=round(r/DELTA)+1;
                  H(ang,r)=H(ang,r)+1;
         end;%if
  end;%for cc
 end;%for ff
 end;%if
end;%for c
                                                                                42
end;%foc f
```

3. Transformada Hough modificadas

Esta transformada también se puede modificar para detectar otras "figuras" o funciones.

Por ejemplo, círculos. Para cada par de puntos existe sólo 1 círculo que los contiene en su borde en posiciones diametrales.

El círculo se puede representar por:

- .- RADIO
- .- Angulo desde origen hasta el centro
- .- Distancia desde el origen hasta el centro

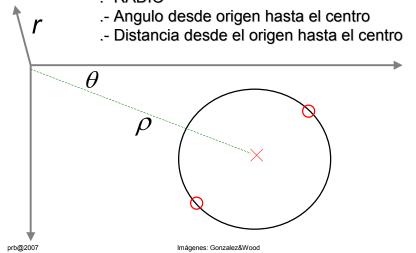
El espacio de la transformada tiene 3 dimensiones → se deben detectar "aglomeraciones" de puntos en el espacio.

43

3. Transformada Hough modificadas

El círculo se puede representar por:

.- RADIO



3. Transformada Hough modificadas

Una simplificación consiste en representar los círculos sólo por el:

- .- Angulo desde origen hasta el centro
- .- Distancia desde el origen hasta el centro

Es decir no se considera el radio → si existen muchos círculos de diferentes radios, pero con un mismo centro, se detectan como uno solo.

La transformada se puede extender para cualquier función y=f(x).

prb@2007

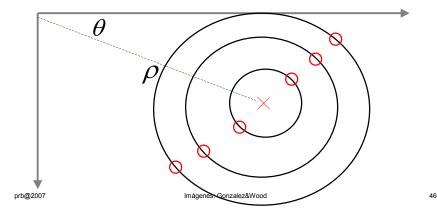
Imágenes: Gonzalez&Wood

45

3. Transformada Hough modificadas

Si el círculo se representa por:

- .- Angulo desde origen hasta el centro
- .- Distancia desde el origen hasta el centro



Segmentación y Descripción de Imágenes

DESCRIPTORES DE FRONTERAS (BORDES)

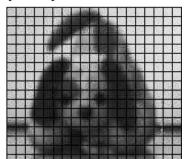
prb@2007

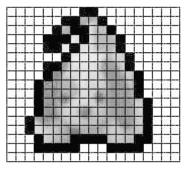
Imágenes: Gonzalez&Wood

47

Descripción de Fronteras...

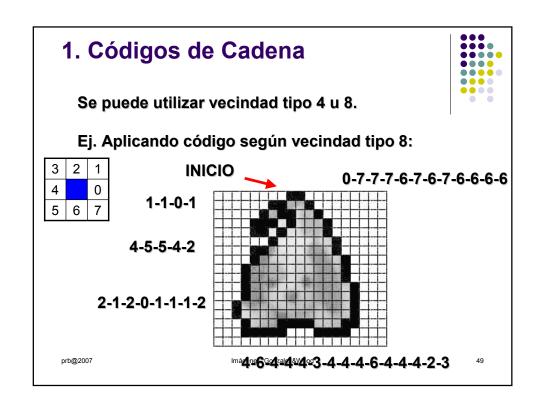
Generalmente se desea reconocer o describir un cierto objeto delimitado por un borde. Una solución es encontrar el "código de cadena" que representa dicho borde.

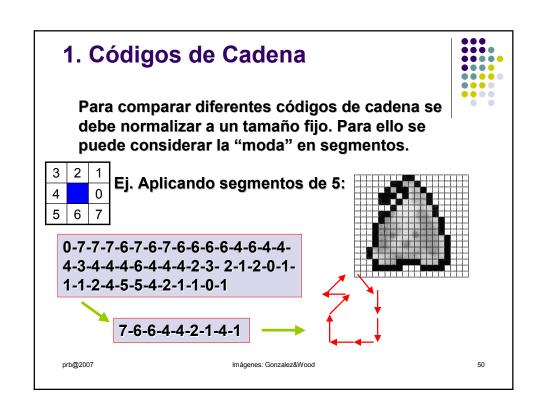




prb@2007

Imágenes: Gonzalez&Wood





1. Códigos de Cadena

Para comparar dos códigos de cadena normalizados, se puede determinar la correlación cruzada.

	3	2	1
	4		0
	5	6	7
•			

135	90	45
180		0
225	270	315

Sea:

$$C_{ab} = \frac{1}{n} \sum_{i=1}^{n} a_i b_i$$

Donde:

$$a_i b_i = \cos(\angle a_i - \angle b_i)$$

Si las cadenas son similares el coeficiente C tiende a 1.

prb@2007

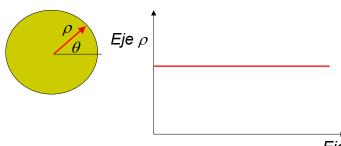
Imágenes: Gonzalez&Wood

51

2. Signaturas

Otro método consiste en determinar la función o curva de signatura de un objeto.

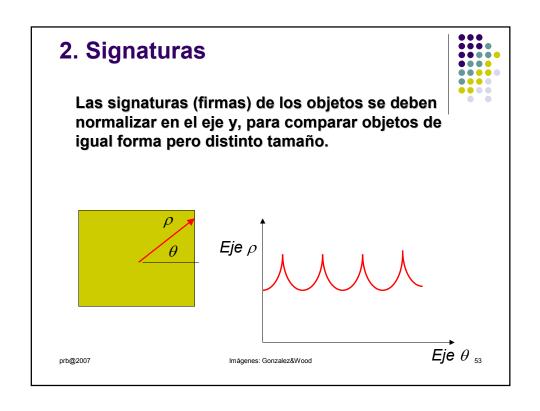
Una de las funciones de signatura más comunes es la distancia de los puntos del borde al centro del objeto

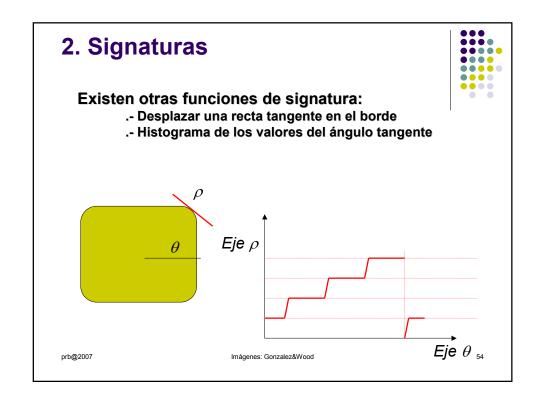


prb@2007

Imágenes: Gonzalez&Wood

Eje θ 52





3. Descriptores de Fourier

Los Descriptores de Fourier representan la forma del objeto.

Los primeros descriptores indican la forma general del objeto y los últimos descriptores los más pequeños detalles

Para una clasificación un pequeño conjunto de descriptores puede ser suficiente.

prb@2007

Imágenes: Gonzalez&Wood

55

3. Descriptores de Fourier

La TF Unidimensional se aplica sobre una función continua que describe el contorno de una imagen.

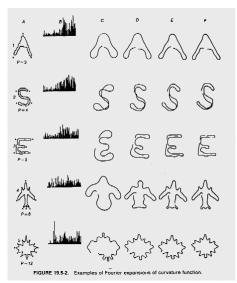
Cada punto del borde x,y se considera un punto complejo p=x+jy.

De esta manera se aplica la transformada en una dimensión.

prb@2007

Imágenes: Gonzalez&Wood

3. Descriptores de Fourier



Con mas descriptores, mas aproximada será la imagen a a la original.

La compresión busca el máximo número de descriptores que se puedan eliminar de forma que se recupere la imagen original sin problemas.

Permite dar mayor estabilidad a la comparación de códigos de cadena.

prb@2007

Imágenes: Gonzalez&Wood