Digital Image
Processing
Using MATLAB

Rafael C. Gonzalez

111111 ty of Tennessee

Richard E. Woods

MedData Interactive

Steven L. Eddins

The MathWorks, Inc.

PEARSON

Prentice
Hall

Upper Saddle River, NJ 07458

Library of Congress Cataloging-in-Publication Data on File

Vice President and Editorial Director, ECS: Marcia Horton
Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Publisher: Tom Robbins

Editorial Assistant: Carole Snyder

Executive Managing Editor: Vince O’Brien

Managing Editor: David A. George

Production Editor: Rose Kernan

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson

Art Director: Jayne Conte

Cover Designer: Richard E. Woods

Art Editor: Xiaohong Zhu

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lisa McDowell

Senior Marketing Manager: Holly Stark

VIO © 2004 by Pearson Education, Inc.
Ul Pcarson Prentice-Hall
Prentice Pearson Education, Inc.
Hall Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
without permission in writing from the publisher.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.
MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher shall not be liable in any event for incidental or consequential damages with, or
arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America
10 9 8 7 6 54 3 21

ISBN 0-13-008519-7

Pearson Education Ltd., London

Pearson Education Australia Pty., Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto

Pearson Education de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Introduction

Preview

Digital image processing is an area characterized by the need for extensive ex-
perimental work to establish the viability of proposed solutions to a given
problem. In this chapter we outline how a theoretical base and state-of-the-art
software can be integrated into a prototyping environment whose objective is
to provide a set of well-supported tools for the solution of a broad class of
problems in digital image processing.

Background

An important characteristic underlying the design of image processing sys-
tems is the significant level of testing and experimentation that normally is re-
quired before arriving at an acceptable solution. This characteristic implies
that the ability to formulate approaches and quickly prototype candidate solu-
tions generally plays a major role in reducing the cost and time required to
arrive at a viable system implementation.

Little has been written in the way of instructional material to bridge the gap
between theory and application in a well-supported software environment. The
main objective of this book is to integrate under one cover a broad base of the-
oretical concepts with the knowledge required to implement those concepts
using state-of-the-art image processing software tools. The theoretical underpin-
nings of the material in the following chapters are mainly from the leading text-
book in the field: Digital Image Processing, by Gonzalez and Woods, published
by Prentice Hall. The software code and supporting tools are based on the lead-
ing software package in the field: The MATLAB Image Processing Toolbox,

“In the following discussion and in subsequent chapters we sometimes refer to Digital Image Processing
by Gonzalez and Woods as “the Gonzalez-Woods book,” and to the Image Processing Toolbox as “IPT”
or simply as the “toolbox.”

2

Chapter 1

Introduction

from The MathWorks, Inc. (see Section 1.3). The material in the present book
shares the same design, notation, and style of presentation as the Gonzalez-
Woods book, thus simplifying cross-referencing between the two.

The book is self-contained. To master its contents, the reader should have
introductory preparation in digital image processing, either by having taken a
formal course of study on the subject at the senior or first-year graduate level,
or by acquiring the necessary background in a program of self-study. It is as-
sumed also that the reader has some familiarity with MATLAB, as well as
rudimentary knowledge of the basics of computer programming, such as that
acquired in a sophomore- or junior-level course on programming in a techni-
cally oriented language. Because MATLAB is an array-oriented language,
basic knowledge of matrix analysis also is helpful.

The book is based on principles. It is organized and presented in a textbook
format, not as a manual. Thus, basic ideas of both theory and software are ex-
plained prior to the development of any new programming concepts. The ma-
terial is illustrated and clarified further by numerous examples ranging from
medicine and industrial inspection to remote sensing and astronomy. This ap-
proach allows orderly progression from simple concepts to sophisticated im-
plementation of image processing algorithms. However, readers already
familiar with MATLAB, IPT, and image processing fundamentals can proceed
directly to specific applications of interest, in which case the functions in the
book can be used as an extension of the family of IPT functions. All new func-
tions developed in the book are fully documented, and the code for each is
included either in a chapter or in Appendix C.

Over 60 new functions are developed in the chapters that follow. These
functions complement and extend by 35% the set of about 175 functions in
IPT. In addition to addressing specific applications, the new functions are clear
examples of how to combine existing MATLAB and IPT functions with new
code to develop prototypic solutions to a broad spectrum of problems in digi-
tal image processing. The toolbox functions, as well as the functions developed
in the book, run under most operating systems. Consult the book Web site (see
Section 1.5) for a complete list.

What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y), where x and
y are spatial coordinates, and the amplitude of f at any pair of coordinates
(x, y) is called the intensity or gray level of the image at that point. When x, y,
and the amplitude values of f are all finite, discrete quantities, we call the
image a digital image. The field of digital image processing refers to processing
digital images by means of a digital computer. Note that a digital image is com-
posed of a finite number of elements, each of which has a particular location
and value. These elements are referred to as picture elements, image elements,
pels, and pixels. Pixel is the term most widely used to denote the elements of a
digital image. We consider these definitions formally in Chapter 2.

1.2 m What Is Digital Image Processing?

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike hu-
mans, who are limited to the visual band of the electromagnetic (EM) spec-
trum, imaging machines cover almost the entire EM spectrum, ranging from
gamma to radio waves. They can operate also on images generated by sources
that humans are not accustomed to associating with images. These include ul-
trasound, electron microscopy, and computer-generated images. Thus, digital
image processing encompasses a wide and varied field of applications.

There is no general agreement among authors regarding where image pro-
cessing stops and other related areas, such as image analysis and computer vi-
sion, start. Sometimes a distinction is made by defining image processing as a
discipline in which both the input and output of a process are images. We be-
lieve this to be a limiting and somewhat artificial boundary. For example,
under this definition, even the trivial task of computing the average intensity
of an image would not be considered an image processing operation. On the
other hand, there are fields such as computer vision whose ultimate goal is to
use computers to emulate human vision, including learning and being able to
make inferences and take actions based on visual inputs. This area itself is a
branch of artificial intelligence (AI), whose objective is to emulate human in-
telligence. The field of Al is in its earliest stages of infancy in terms of devel-
opment, with progress having been much slower than originally anticipated.
The area of image analysis (also called image understanding) is in between
image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing
at one end to computer vision at the other. However, one useful paradigm is to
consider three types of computerized processes in this continuum: low-, mid-,
and high-level processes. Low-level processes involve primitive operations
such as image preprocessing to reduce noise, contrast enhancement, and image
sharpening. A low-level process is characterized by the fact that both its inputs
and outputs are images. Mid-level processes on images involve tasks such as
segmentation (partitioning an image into regions or objects), description of
those objects to reduce them to a form suitable for computer processing, and
classification (recognition) of individual objects. A mid-level process is charac-
terized by the fact that its inputs generally are images, but its outputs are at-
tributes extracted from those images (e.g., edges, contours, and the identity of
individual objects). Finally, higher-level processing involves “making sense” of
an ensemble of recognized objects, as in image analysis, and, at the far end
of the continuum, performing the cognitive functions normally associated with
human vision.

Based on the preceding comments, we see that a logical place of overlap be-
tween image processing and image analysis is the area of recognition of
individual regions or objects in an image. Thus, what we call in this book digital
image processing encompasses processes whose inputs and outputs are images
and, in addition, encompasses processes that extract attributes from images, up
to and including the recognition of individual objects. As a simple illustration

3

4

Chapter 1

Introduction

to clarify these concepts, consider the area of automated analysis of text. The
processes of acquiring an image of the area containing the text, preprocessing
that image, extracting (segmenting) the individual characters, describing the
characters in a form suitable for computer processing, and recognizing those
individual characters, are in the scope of what we call digital image processing
in this book. Making sense of the content of the page may be viewed as
being in the domain of image analysis and even computer vision, depending on
the level of complexity implied by the statement “making sense.” Digital
image processing, as we have defined it, is used successfully in a broad range of
areas of exceptional social and economic value.

Background on MATLAB and the Image
Processing Toolbox

MATLAB is a high-performance language for technical computing. It inte-
grates computation, visualization, and programming in an easy-to-use environ-
ment where problems and solutions are expressed in familiar mathematical
notation. Typical uses include the following:

e Math and computation

Algorithm development

Data acquisition

Modeling, simulation, and prototyping

Data analysis, exploration, and visualization

Scientific and engineering graphics

Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows formulating solutions to many
technical computing problems, especially those involving matrix representa-
tions, in a fraction of the time it would take to write a program in a scalar non-
interactive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was written
originally to provide easy access to matrix software developed by the LIN-
PACK (Linear System Package) and EISPACK (Eigen System Package) pro-
jects. Today, MATLAB engines incorporate the LAPACK (Linear Algebra
Package) and BLAS (Basic Linear Algebra Subprograms) libraries, constitut-
ing the state of the art in software for matrix computation.

In university environments, MATLARB is the standard computational tool for
introductory and advanced courses in mathematics, engineering, and science. In
industry, MATLAB is the computational tool of choice for research, develop-
ment, and analysis. MATLAB is complemented by a family of application-
specific solutions called toolboxes. The Image Processing Toolbox is a collection
of MATLAB functions (called M-functions or M-files) that extend the capabili-
ty of the MATLAB environment for the solution of digital image processing
problems. Other toolboxes that sometimes are used to complement IPT are the
Signal Processing, Neural Network, Fuzzy Logic, and Wavelet Toolboxes.

1.4 m Areas of Image Processing Covered in the Book 5

The MATLAB Student Version includes a full-featured version of
MATLAB. The Student Version can be purchased at significant discounts at
university bookstores and at the MathWorks” Web site (www.mathworks.com).
Student versions of add-on products, including the Image Processing Toolbox,
also are available.

Areas of Image Processing Covered in the Book

Every chapter in this book contains the pertinent MATLAB and IPT material
needed to implement the image processing methods discussed. When a MAT-
LAB or IPT function does not exist to implement a specific method, a new
function is developed and documented. As noted earlier, a complete listing of
every new function is included in the book. The remaining eleven chapters
cover material in the following areas.

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB
notation, indexing, and programming concepts. This material serves as founda-
tion for the rest of the book.

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter cov-
ers in detail how to use MATLAB and IPT to implement intensity transfor-
mation functions. Linear and nonlinear spatial filters are covered and
illustrated in detail.

Chapter 4: Processing in the Frequency Domain. The material in this chapter
shows how to use IPT functions for computing the forward and inverse fast
Fourier transforms (FFTs), how to visualize the Fourier spectrum, and how to
implement filtering in the frequency domain. Shown also is a method for gen-
erating frequency domain filters from specified spatial filters.

Chapter 5: Image Restoration. Traditional linear restoration methods, such as
the Wiener filter, are covered in this chapter. Iterative, nonlinear methods,
such as the Richardson-Lucy method and maximum-likelihood estimation for
blind deconvolution, are discussed and illustrated. Geometric corrections and
image registration also are covered.

Chapter 6: Color Image Processing. This chapter deals with pseudocolor and
full-color image processing. Color models applicable to digital image process-
ing are discussed, and IPT functionality in color processing is extended via im-
plementation of additional color models. The chapter also covers applications
of color to edge detection and region segmentation.

Chapter 7: Wavelets. In its current form, IPT does not have any wavelet trans-
forms. A set of wavelet-related functions compatible with the Wavelet Toolbox
is developed in this chapter that will allow the reader to implement all the
wavelet-transform concepts discussed in the Gonzalez-Woods book.

Chapter 8: Image Compression. The toolbox does not have any data compres-
sion functions. In this chapter, we develop a set of functions that can be used
for this purpose.

6

Chapter 1

Introduction

Chapter 9: Morphological Image Processing. The broad spectrum of func-
tions available in IPT for morphological image processing are explained and
illustrated in this chapter using both binary and gray-scale images.

Chapter 10: Image Segmentation. The set of IPT functions available for
image segmentation are explained and illustrated in this chapter. New func-
tions for Hough transform processing and region growing also are developed.

Chapter 11: Representation and Description. Several new functions for ob-
ject representation and description, including chain-code and polygonal repre-
sentations, are developed in this chapter. New functions are included also for
object description, including Fourier descriptors, texture, and moment invari-
ants. These functions complement an extensive set of region property func-
tions available in IPT.

Chapter 12: Object Recognition. One of the important features of this chap-
ter is the efficient implementation of functions for computing the Euclidean
and Mahalanobis distances. These functions play a central role in pattern
matching. The chapter also contains a comprehensive discussion on how to
manipulate strings of symbols in MATLAB. String manipulation and matching
are important in structural pattern recognition.

In addition to the preceding material, the book contains three appendices.

Appendix A: Contains a summary of all IPT and new image-processing func-
tions developed in the book. Relevant MATLAB function also are included.
This is a useful reference that provides a global overview of all functions in the
toolbox and the book.

Appendix B: Contains a discussion on how to implement graphical user inter-
faces (GUIs) in MATLAB. GUIs are a useful complement to the material in
the book because they simplify and make more intuitive the control of inter-
active functions.

Appendix C: New function listings are included in the body of a chapter when
a new concept is explained. Otherwise the listing is included in Appendix C.
This is true also for listings of functions that are lengthy. Deferring the listing
of some functions to this appendix was done primarily to avoid breaking the
flow of explanations in text material.

The Book Web Site

An important feature of this book is the support contained in the book Web
site. The site address is

www.prenhall.com/gonzalezwoodseddins
This site provides support to the book in the following areas:

¢ Downloadable M-files, including all M-files in the book
¢ Tutorials

1.7 m The MATLAB Working Environment

Projects

Teaching materials

Links to databases, including all images in the book
Book updates

Background publications

The site is integrated with the Web site of the Gonzalez-Woods book:
www.prenhall.com/gonzalezwoods

which offers additional support on instructional and research topics.

Notation

Equations in the book are typeset using familiar italic and Greek symbols,
as in f(x,y) = Asin(ux + vy) and ¢(u,v) = tan '[I(u, v)/R(u,v)]. All
MATLAB function names and symbols are typeset in monospace font, as in
fft2(f), logical(A),and roipoly(f, c, r).

The first occurrence of a MATLAB or IPT function is highlighted by use of
the following icon on the page margin:

function name

Similarly, the first occurrence of a new function developed in the book is high-
lighted by use of the following icon on the page margin:

function name

The symbol is used as a visual cue to denote the end of a function
listing.

When referring to keyboard keys, we use bold letters, such as Return and
Tab. We also use bold letters when referring to items on a computer screen or
menu, such as File and Edit.

The MATLAB Working Environment

In this section we give a brief overview of some important operational aspects
of using MATLAB.

The MATLAB Desktop

The MATLAB desktop is the main MATLAB application window. As Fig. 1.1
shows, the desktop contains five subwindows: the Command Window, the
Workspace Browser, the Current Directory Window, the Command History
Window, and one or more Figure Windows, which are shown only when the
user displays a graphic.

7

8 Chapter 1 m Introduction

Ve MaATLAB Desktop

File Edit View Web Window Help
D@ | #Ers o ‘ W | 2 | current Dirsctory: [cnmarL agspswork ﬂJ
SPace 2] x]

Command Window

>> £ = inread('rose_S512.tif');
>> inshow(f)

ﬁﬂlm‘ﬁjstm; Base ¥

Current Directory Window

Name |S1ze | Byr.esll:.lass | >>
22214 512)(512‘ 252144‘u:mcﬂ array ‘
Command Window
Figure Window T\
) Figure No. 1 [_[O] x]
Workspace Browser Eile Edit View Insert Tools Window Help

Dz@@ xAA/ 200

| workspace | CurrentDirectory
Command History x|

size (SI) A
figure, imshow(SI)

imwrite (51, 'Figl0XX(b) (seed_points).tif', 'compr
%-- 1/16/03 1:51 PM --%

£ = imread(rose.tif'):

£ = imread('rose.tif');

inshou(£) Command History

¢ = £(l:4zend,l:d:end);

inshow(g)

¢ = £(l:3zend,l:3:end);

inshow(g)

imwrite (g, 'rose.tif')

£ = inread('rose_S12.tif'):
inshow(£)

£ = inread('rose_S12.tif'):

iushow(£) = =
4 | > il 1o

FIGURE 1.1 The MATLAB desktop and its principal components.

The Command Window is where the user types MATLAB commands and
expressions at the prompt (>>) and where the outputs of those commands are
displayed. MATLAB defines the workspace as the set of variables that the
user creates in a work session. The Workspace Browser shows these variables
and some information about them. Double-clicking on a variable in the Work-
space Browser launches the Array Editor, which can be used to obtain infor-
mation and in some instances edit certain properties of the variable.

The Current Directory tab above the Workspace tab shows the contents of
the current directory, whose path is shown in the Current Directory Window.
For example, in the Windows operating system the path might be as follows:
C:\MATLAB\Work, indicating that directory “Work” is a subdirectory of
the main directory “MATLAB,” which is installed in drive C. Clicking on the
arrow in the Current Directory Window shows a list of recently used paths.

Clicking on the button to the right of the window allows the user to change the
current directory.

1.7 m The MATLAB Working Environment

MATLAB uses a search path to find M-files and other MATLAB-related
files, which are organized in directories in the computer file system. Any file
run in MATLAB must reside in the current directory or in a directory that
is on the search path. By default, the files supplied with MATLAB and
MathWorks toolboxes are included in the search path. The easiest way to
see which directories are on the search path, or to add or modify a search
path, is to select Set Path from the File menu on the desktop, and then use
the Set Path dialog box. It is good practice to add any commonly used di-
rectories to the search path to avoid repeatedly having the change the cur-
rent directory.

The Command History Window contains a record of the commands a user
has entered in the Command Window, including both current and previous
MATLAB sessions. Previously entered MATLAB commands can be selected
and re-executed from the Command History Window by right-clicking on a
command or sequence of commands. This action launches a menu from which
to select various options in addition to executing the commands. This is a use-
ful feature when experimenting with various commands in a work session.

Using the MATLAB Editor to Create M-files

The MATLAB editor is both a text editor specialized for creating M-files and
a graphical MATLAB debugger. The editor can appear in a window by itself,
or it can be a subwindow in the desktop. M-files are denoted by the extension
.m, as in pixeldup.m. The MATLAB editor window has numerous pull-down
menus for tasks such as saving, viewing, and debugging files. Because it per-
forms some simple checks and also uses color to differentiate between various
elements of code, this text editor is recommended as the tool of choice for
writing and editing M-functions. To open the editor, type edit at the prompt in
the Command Window. Similarly, typing edit filename at the prompt opens
the M-file filename.m in an editor window, ready for editing. As noted earli-
er, the file must be in the current directory, or in a directory in the search path.

Getting Help

The principal way to get help online' is to use the MATLAB Help Browser,
opened as a separate window either by clicking on the question mark symbol
(?) on the desktop toolbar, or by typing helpbrowser at the prompt in the
Command Window. The Help Browser is a Web browser integrated into the
MATLAB desktop that displays Hypertext Markup Language (HTML) docu-
ments. The Help Browser consists of two panes, the help navigator pane, used
to find information, and the display pane, used to view the information.
Self-explanatory tabs on the navigator pane are used to perform a search.
For example, help on a specific function is obtained by selecting the Search
tab, selecting Function Name as the Search Type, and then typing in the func-
tion name in the Search for field. It is good practice to open the Help Browser

TUse of the term online in this book refers to information, such as help files, available in a local computer
system, not on the Internet.

9

10

Chapter 1

Introduction

at the beginning of a MATLAB session to have help readily available during
code development or other MATLARB task.

Another way to obtain help for a specific function is by typing doc followed
by the function name at the command prompt. For example, typing doc format
displays documentation for the function called format in the display pane of
the Help Browser. This command opens the browser if it is not already open.

M-functions have two types of information that can be displayed by the
user. The first is called the HI line, which contains the function name and a
one-line description. The second is a block of explanation called the Help text
block (these are discussed in detail in Section 2.10.1). Typing help at the
prompt followed by a function name displays both the H1 line and the Help
text for that function in the Command Window. Occasionally, this information
can be more up to date than the information in the Help browser because it is
extracted directly from the documentation of the M-function in question. Typ-
ing lookfor followed by a keyword displays all the H1 lines that contain that
keyword. This function is useful when looking for a particular topic without
knowing the names of applicable functions. For example, typing lookfor edge
at the prompt displays all the H1 lines containing that keyword. Because the
H1 line contains the function name, it then becomes possible to look at specif-
ic functions using the other help methods. Typing lookfor edge —all at the
prompt displays the H1 line of all functions that contain the word edge in ei-
ther the H1 line or the Help text block. Words that contain the characters edge
also are detected. For example, the H1 line of a function containing the word
polyedge in the H1 line or Help text would also be displayed.

It is common MATLAB terminology to use the term help page when refer-
ring to the information about an M-function displayed by any of the preceding
approaches, excluding lookfor. It is highly recommended that the reader be-
come familiar with all these methods for obtaining information because in the
following chapters we often give only representative syntax forms for MAT-
LAB and IPT functions. This is necessary either because of space limitations
or to avoid deviating from a particular discussion more than is absolutely nec-
essary. In these cases we simply introduce the syntax required to execute the
function in the form required at that point. By being comfortable with online
search methods, the reader can then explore a function of interest in more de-
tail with little effort.

Finally, the MathWorks’ Web site mentioned in Section 1.3 contains a large
database of help material, contributed functions, and other resources that
should be utilized when the online documentation contains insufficient infor-
mation about a desired topic.

Saving and Retrieving a Work Session

There are several ways to save and load an entire work session (the contents
of the Workspace Browser) or selected workspace variables in MATLAB. The
simplest is as follows.

To save the entire workspace, simply right-click on any blank space in the
Workspace Browser window and select Save Workspace As from the menu

that appears. This opens a directory window that allows naming the file and se-
lecting any folder in the system in which to save it. Then simply click Save. To
save a selected variable from the Workspace, select the variable with a left
click and then right-click on the highlighted area. Then select Save Selection
As from the menu that appears. This again opens a window from which a fold-
er can be selected to save the variable. To select multiple variables, use shift-
click or control-click in the familiar manner, and then use the procedure just
described for a single variable. All files are saved in double-precision, binary
format with the extension .mat. These saved files commonly are referred to as
MAT-files. For example, a session named, say, mywork_2003_02_10, would ap-
pear as the MAT-file mywork_2003_02_10.mat when saved. Similarly, a saved
image called final_image (which is a single variable in the workspace) will
appear when saved as final_image.mat.

To load saved workspaces and/or variables, left-click on the folder icon on
the toolbar of the Workspace Browser window. This causes a window to open
from which a folder containing the MAT-files of interest can be selected.
Double-clicking on a selected MAT-file or selecting Open causes the contents
of the file to be restored in the Workspace Browser window.

It is possible to achieve the same results described in the preceding para-
graphs by typing save and load at the prompt, with the appropriate file names
and path information. This approach is not as convenient, but it is used when
formats other than those available in the menu method are required. As an
exercise, the reader is encouraged to use the Help Browser to learn more
about these two functions.

How References Are Organized in the Book

All references in the book are listed in the Bibliography by author and date, as
in Soille [2003]. Most of the background references for the theoretical content
of the book are from Gonzalez and Woods [2002]. In cases where this is not
true, the appropriate new references are identified at the point in the discus-
sion where they are needed. References that are applicable to all chapters,
such as MATLAB manuals and other general MATLAB references, are so
identified in the Bibliography.

Summary

In addition to a brief introduction to notation and basic MATLAB tools, the material
in this chapter emphasizes the importance of a comprehensive prototyping environ-
ment in the solution of digital image processing problems. In the following chapter we
begin to lay the foundation needed to understand IPT functions and introduce a set of
fundamental programming concepts that are used throughout the book. The material
in Chapters 3 through 12 spans a wide cross section of topics that are in the mainstream
of digital image processing applications. However, although the topics covered are var-
ied, the discussion in those chapters follows the same basic theme of demonstrating
how combining MATLAB and IPT functions with new code can be used to solve a
broad spectrum of image-processing problems.

Summary

11

