LECTURE 12: Aperture Antennas—Part |
(The unigueness theorem. The equivalence principle. The application of

the equivalence principle to aperture problem. The uniform rectangular
aperture. Thetapered rectangular aperture.)

I ntroduction

Aperture antennas constitute a large class of antennas, which emit
el ectromagnetic wave through an opening (or aperture). These antennas
have close analogs in acoustics. the megaphone and the parabolic
microphone. The pupil of the human eyeisatypical aperture receiver
for optical EM radiation. At radio and microwave frequencies, horns,
waveguide apertures and reflectors are examples of aperture antennas.
Aperture antennas are of common use at UHF and above. It is because
aperture antennas have their gain increase as ~ f*. For an aperture
antennato be efficient and have high directivity, it has to have an area
comparable or larger than A*. Obviously, these antennas would be
impractical at low frequencies. Another positive feature of the aperture
antennas is their near-real valued input impedance and geometry
compatibility with waveguide feeds.

To facilitate the analysis of these antennas, the equivalence principle
isapplied. Thisallows usto carry out the far-field analysis in the outer
(unbounded) region only, which is external to the radiating aperture and
the antenna. This requires the knowledge of the tangential field
components at the aperture, asit follows from the equivalence principle.

1. Uniguenesstheorem
A solution is said to be unique if it is the only one possible among a
given class of solutions.

The EM field in a given region Vg isuniquely defined if
- all sourcesare given;

- either the tangential E. components or the tangential H_
components are specified at the boundary S.



The uniqueness theorem is proven by making use of the Poynting's
theorem in integral form:

{p(ExH )ds+ jo[[(u|H F —e|EF)dv+[[[o|EF dv=
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(12.1)

Poynting’ s theorem states the conservation of energy law in EM systems.
One starts with the supposition that a given EM problem has two
solutions (due to the same sources and the same boundary conditions):

(Ea,Ha) and (Eb,Hb). The difference field is then formed:
SE=E*_E®
SH=H?*—H"

Since the difference field has no sources, it will satisfy the source-free
form of (12.1):

{p(SExoH"Jds+ jo[[(u16H F —|SEF)dv+[[[o | SEF dv=0 (12.3)
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S [s] [s]

(12.2)

Since both fields satisfy the same boundary conditions at S, then SE =0
and 6H =0 over S Thisleaves uswith

jwm(u |6H [ —¢| SE |2)dv+ma|§é Fdv=0, (12.4)

Vs Ms)
whichistrue only if
of[[(#|6HF -£|SEF)dv=0
Vs

[[[o16EF dv=0
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If we assume some dissipation, however dlight, equations (12.5) are
satisfied only if SE = SH =0 everywherein the volume V. This
implies the uniqueness of the solution. If o =0, whichisaphysical
impossibility, but is often used approximation, multiple solutions
(OE,dH) may exist in the form of self-resonant modes of the structure

(12.5)




under consideration. In open problems, resonance isimpossiblein the
whole region.

Notice that the uniqueness theorem holdsiif either SE =0 or 6H =0
istrue on any part of the boundary.

2. Equivalence principles

The equivalence principle follows from the uniqueness theorem. It
allows usto build ssmpler to solve problems. Aslong as the equivalent
problem preserves the boundary conditions of the original problem for
thefield at S it isgoing to produce the only one possible solution for the
region outside Vi, .

—
(b) General equivalent
problem
J, =fx(H,-H,) U
N Lo (12.6)
M, =(E,—E,)xA
J. =AxH,
o . (12.7)
M,=E xn

The zero-field formulation is often
referred to as Love' s equivalence

o (c) Equivalent problem
principle. with zero fields



One can apply Love s equivalence principle in three different ways.

(@)

(b)

(©)

One can assume that the boundary Sis a perfect conductor. This
eliminates the surface electric currents, i.e. J, =0, and leaves

just surface magnetic currents M ., which radiate in the presence

of a perfect electric surface.
One can assume that the boundary Sis a perfect magnetic
conductor. This eliminates the surface magnetic currents, i.e.

M, =0, and leaves just surface electric currents J_, which

radiate in the presence of a perfect magnetic surface.
Make no assumptions about the materialsinside S, and define

both J_ and M, currents, which are radiating in free space (no

fictitious conductors behind them). It can be shown that these
equivalent currents create zero fieldsinside V.

All three approaches lead to the same field solution according to the
uniqueness theorem. The first two approaches are not very useful in the
general case of curvilinear boundary surface S. However, in the case of
flat infinite planes (walls), the image theory can be used to reduce the
problem to an open one. Image theory can be successfully applied to
curved surfaces provided the curvature' sradius is large compared to the
wavelength. Hereis how one can implement Love's equivalence
principles in conjunction with image theory.

(@) Original problem

7
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(b) Equivalent problem
- electric wall

(c) Equivalent problem
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The above approach is used to evaluate fields in half-space as excited by
apertures. Thefield behind Sis assumed known. Thisis enough to
define equivalent surface currents. Using image theory, the open-region

far-zone solutions for the vector potentials, A (resulting from J,)and F
(resulting from M), are found from:

—Jﬂr
A(P) = o

j j J.(F)e’ " as (12.8)

a iBr

F(P)= e j j M _(F)e/” " ds (12.9)
Here, i denotes the unit vector poi ntl ng from the origin of the coordinate
system to the point of observation P. The integration point Q is specified
through the radius-vector r’. Inthefar zone, it is assumed that the field
propagates radially away from the antenna. It is convenient to introduce
the so-called propagation vector:

B =pr, (12.10)
which characterizes both the phase constant and the direction of
propagation of the wave. The vector potentials can then be written as.

—Jﬁf
A(P) = “e j j I (F)e’ ds (12.11)
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The relations between the far-zone fields and the vector potentials are
rather simple.

F(P)=¢

j j M _(F)e”"ds’ (12.12)
S

E =—jo(A0+AP) (12.13)
He =—jw(F,0+F,p) (12.14)

Since
EP =pH ™ xr, (12.15)

the total far-zone electric field is found as:

E™ =E™ +E™ =—jw[(A,9 ~nF,)0+(A, +77F9)qb] (12.16)
Equation (12.16) involves both vector potentials as arising from both
types of surface currents. Computations are reduced in half if image

theory is used in conjunction with an electric or magnetic wall
assumption.

3. Application of the equivalence principleto aperture problems
The equivalence principle iswidely used in the analysis of aperture
antennas. To calculate exactly the far fields, the exact field distribution
at the aperture is needed. Inthe case of exact knowledge of the aperture
field distribution, all three approaches given above will produce the same
results. However, such exact knowledge of the aperture field distribution
isusually impossible, and certain approximations are used. Then, the
three equivalence-principle approaches produce dightly different results,
the consistency being dependent on how accurate our knowledge about
the aperturefield is. Usually, it isassumed that the field isto be
determined in half-space, leaving the feed and the antenna behind a
infinite wall S (electric or magnetic). The aperture of the antenna S, is
this portion of Swhere we have an approximate knowledge of the field
distribution based on the type of the feed line or the incident wave
illuminating the aperture. Thisisthe so-called physical optics
approximation, which certainly is more accurate than the geometrical
optics approach of ray tracing. The larger the aperture (as compared to



the wavelength), the more accurate the approximation based on the
incident wave.

Let us assume that the fields at the aperture are known: E,,H,, and
they are zero everywhereelseat S. The equivalent current densities are:

J. =fxH,
L (12.17)
M,=E xn
Using (12.17) in (12.11) and (12.12) produces:
- aZd LAl
A(P) = u S fix [[F.e7 as (12.18)
Ay <
- o ifr o
F(P)=—e——fx j j E.el’"ds (12.19)
Ay s
Theradiation integralsin (12.18) and (12.19) will be denoted shortly as:
gh = j j H e/’ ds (12.20)
S -
7 =[[Ee’"ds (12.21)
S

One can find general vector expression for the far-field E vector
making use of equation (12.16) written as:

E™ =—jwA- jonF xF, (12.22)
where the longitudinal A component isto be neglected. Substituting
(12.18) and (12.19) yields:

5 e
Efar - _
1b 4y

Thisisthe full vector form of the radiated field resulting from the
aperture field, and it is referred to as the vector diffraction integral (or
vector Kirchhoff integral).

fx”[ﬁx E, - nfx(ﬁx Ha)}ejﬁ'r'ds’ (12.23)
)



We shall now consider a practical case of aflat aperture lying in the
x—y planewith n=2z. Then:
o b

A= u D AR 12.24

A= p——(-7)%+779) (12.24)

Eoel (-7E%+ IE9) (12.25)
Azr " '

The integrals in the above expressions can be explicitly written for this
caseinwhich ' = XX+ YyV:

jXE _ ..Eax (X’, y,)ejlg(xgngcosw)/sinesinqo)dx'dy/ (12.26)
.S;
~E _ [ i f(Xsin@cosgp+Yy'sindsing)
§ = [[E, (X yyetisnomsessnagygy - (12.27)
Sa
jXH _ ..Hax()(’ y/)ejIB(x’sinecos(p+)/Sin05in(D)dxfdy’ (12.28)
Sa
j)'/" _ ..Hay ()(’ y/)ejﬂ()(sin9cos¢+)/sin95in¢)d)(dy’ (12_29)

<
Note that the above integrals are exactly the double inverse Fourier
transforms of the aperture field's components.

The vector potentialsin spherical terms are;

B i _ N o "
A= i e4”r [4900549(7{' singp—J,' cosp)+@( T, cosp+ T sm(p)} (12.30)
F=-¢ A:;rr [écose(jfsin(p—jf cosp)+¢( T COS(p+7yEsin(p)] (12.31)

By substituting the above expressionsin (12.16), one obtainsthe far E
field components as:

. e_jﬂr ~E ~E
E,=|f o [T, cosp+ T, sinp+ (12.32)
ncosé(J, cosp— T} sing)]
-ipr
o . ~H ~H
E, = 1 —[-n(3, cosp+7,'sing) + (12.33)

cosf(J; cosp— T sing)]



For apertures mounted on a conducting plane, the preferred
equivalent model is the one with electric wall with magnetic current
density

M, =2-(E,xA) (12.34)
radiating in open space. The solution, of course, isvalid only for z> 0.
Inthiscase, 7" =0.
For apertures in open space, the dual current formulation is used.

Then, ausual assumption isthat the aperture fields are related asin the
TEM-wave case;

H, =15 E, (12.35)
n
Thisimplies that
. - JE 7E
FH=doisE or Jl=——,7"= = (12.36)
n n n

This assumption is valid for moderate and high-gain apertures; therefore,
the apertures should be at least a couple of wavelengthsin extent. The
above assumptions reduce (12.32)-(12.33) to:
.5 (1+cosb)
E =
o= 10 Ay 2
e (1+cos6)
E =
0= 161 4rr [

[J”XE cosg+J, sinqp] (12.37)

J,; cosp— Ty s nqp] (12.38)



4. Theuniform rectangular aperture on an infinite ground plane
A rectangular apertureis defined in the x—y plane as shown below.

yA

\ 4

A

If the fields are uniform in amplitude and phase across the aperture, it is
referred to as a uniformrectangular aperture. Let us assume that the

aperture field is y-polarized.

. L

E=ES IXE= ad |y (1239
According to the equivalence principle, we assume an electric wall at

z= 0, where the equivalent magnetic current density is given by
M = ExfA. Applying image theory, one can find the equivalent sources

radlatl ng in open space as:
M, =2M_ =2E,yx2=2EX (12.40)
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The only non-zero radiation integral is:

W12 Ly/2

L
ijZZEO I ejﬂ)(sinecoypdxl. J‘ ejﬂ)/sinesin(pdy:

~L, /2 -L,/2
. L, . .
=2E,L L 2 : 2
v Bl . pL, ..
2Xsm¢9003¢ Ysn@sing
It is appropriate to introduce the pattern variables:
pL,
u= >
(12.42)

v=_"—"Ysin@dsn
5 %

The complete radiation fields are found by substituting (12.41) in (12.32)
and (12.33):

g A" sinusinv
E, =10 Py EOLxLy (DTT
i (12.43)
. e sinusinv
E = L L cosecos _—
, =1 o EL, =y

The total-field amplitude pattern is, therefore:

u v (12.44)

: sinu sinv
=J1-sin*fcos?p T =2
u v

11



The principal plane patterns are:
E-plane pattern (¢ =7/ 2)

L
sin ’Bzysine
E, = L (12.45)
Ysing
2
H-plane pattern (¢ =0)
sin('m‘xsinej
E_ =cosé 2 (12.46)
g PL .
23|n9

Principle patterns for aperture of size: L, =34, L, =24

180
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For electrically large apertures, the main beam is narrow and the
\/1—sin26?cosz @ in (12.44) isnegligible, i.e. it isroughly equal to 1 for
all observation angles within the main beam. That iswhy, in the theory

of large arrays, it is assumed that the amplitude pattern of a rectangular
apertureis:

sinu sinv

u \'

pL,

f(u,v) = (12.47)

pL,

where u =Tsin¢9c05(p and v=

sndsing.

Hereisaview of the |sinu/u| function for L, =204 and ¢ =0° (H-
plane pattern):

|sin[20*pi*sin(theta)]/[20*pi*sin(theta)]|
1 | H |

08 S— L A — ]

06 I —— L ]

04 —— L — ]

02 e W ]

0 ‘ | ‘
-1 -0.5 0 0.5 1
sin(theta)

13



Hereisaview of the [sinv/v| functionfor L, =104 and ¢ = 90" (E-

plane pattern):
|sin(10 & sin(theta))/(10 & sin(theta))|

| f\

08 E— 1 FR l

06 SR B R — l
04 E— H I l

02 N— T — :

0 ‘ ‘ ‘
-1 -0.5 0 0.5 1
sin(theta)

Beamwidths
(@ first-null beamwidth

One needs the location of thefirst nullsin the pattern in order to
calculate the FNBW. The nulls of the E-plane pattern are determined
from (12.45) as.

ALy _ _
Tsme,e:en =nz, n=12,... (12.48)
=6, = arcsin[LﬂJ , rad (12.49)
y

Thefirst null occursat n=1.

14



= FNBW =26, = 2arcsin£LiJ, rad (12.50)
y
In asimilar fashion, FNBW, is determined to be:

FNBW, = 2arcsin[iJ , rad (12.51)

X

(b) half-power beamwidth
The half-power point in the E-plane occurs when

L
sin['b’ysine)
2 1

= (12.52)
L
(ﬁvg . ej V2
2
or
L
= 6, =arcs n(O'Ms;t] , rad (12.54)
y
HPBW; = 2arcsin [ O'MS}LJ (12.55)
y

A first-order approximation is possible for very small argumentsin
(12.55), i.e. when L, > 0.4431 (large aperture):

HPBW = O.886Li (12.56)
y
The half-power beamwidth in the H-plane is anal ogous:
. [ 0.4434
HPBW, = 2arcsin (12.57)
X
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Side-lobe level
It is obvious from the properties of the |sin x/ x| function that the

first side lobe has the largest maximum of all sidelobes, and it is:

1E,0=0) 2" _0217-_1326,d8  (12.58)
T 4.494

When evaluating side-lobe levels and beamwidths in the H-plane, one
has to include the cosé factor, too. The smaller the aperture, the less
important this factor is.

Directivity

In ageneral approach to the calculation of the directivity, the tota
radiated power I1 hasto be calculated first using the far-field pattern
expression (12.44).

Dy = _ 4z Imac (12.59)
QA 1_Irad

Here,

U (6.9)= n[|E9|+|E|] Una [F(0.0) P (12.60)

2r

Q= [ [IF(6.9)F sinodedy (12.61)

However, in the case of an aperture illuminated by a TEM wave, one
can use asimpler approach. Generally, for al aperture antennas, the

assumption of auniform TEM wave at the aperture (E = YE,),

H, = —xE (12.62)

n
IS quite accurate (although 7 is not necessarily the intrinsic impedance of
vacuum). The far-field componentsin this case were already derived in
(12.37) and (12.38). They lead to the following expression for the
radiation intensity:

_ ﬂz 2[| ~E 2 ~E |2
UO.0) =gz (raost)’[ |5 P 4107 P (1269
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The maximum value of the function in (12.63) is easily derived after
substituting the radiation integrals from (12.26) and (12.27):

2
[[E.0s

U
87°n S

(12.64)

max —

The integration of the radiation intensity (12.63) over aclosed sphereis
in general not easy. It can be avoided by observing that the total power
reaching the far zone must have passed through the aperture in the first

place. Inthe general aperture case, this power is determined as:

ghSP ds——HlE ? ds (12.65)

Substituting (12.64) and (12.65) in (12.59) flnaIIy yields:

_”Eds

Arr |s,
D. = 12.66
o 2% [[IE,F ds (12.60)
S
| n the case of a uniform rectangular aperture,
2
1= LXLyE (12.67)
2n
2
Ly ) 1B I
U, = Y 12.68
BN aso
Thus, the directivity isfound to be:
U 47z
D, =4r lr_"[ax = 7z L.L, = /12 Ap /12 Ag,f (12.69)

The physical and the effective areas of a uniform aperture are equal.
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5. Theuniform rectangular aperturein open space

Now, we shall examine the same aperture when it is not mounted on
aground plane. Thefield distribution isthe same asin (12.39) but now
the H field must be defined, too, in order to apply the general form of
the equivalence principle with both types of surface currents.

Ea = Y& L /2<X <L, /2

H‘a:—>‘<5 - -Ly/2<y <L, /2
n

Above, again an assumption was made that thereis a direct relation

between the e ectric and the magnetic field components.
To form the equivalent problem, an infinite surface is chosen again to

extend in the z= 0 plane. Over the entire surface, the equivalent J, and

M must be defined. Both J, and M are not zero outside the aperture

inthe z=0 plane because the field is not zero there. Moreover, thefield
is not known a priori outside the aperture. Thus, the exact equivalent
problem cannot be built in practice (at least, not by making use of the
infinite plane model).

The usual assumption madeisthat E, and H, are zero outside the
apertureinthe z=0 plane, and, therefore, so are the equivalent currents
J.and Mg:

(12.70)

X —L /2<X <L, /2

B (" —L,/2<y<L,/2 (12.71)

Since the equivalent currents are related via the TEM-wave assumption,
only the integral JyE is needed for substitution in the far field
expressions derived in (12.37) and (12.38).
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L/2 L,/2

jEZZEO I ejﬂ)(sinHCOS(de" j ejﬂ)/sinesin(pdy:

-L,/2 -L,/2
: L, . .
=2E,L,L 2 : 2
v AL, . Bl . _
2Xsm¢9cosqo Ysin@sing

Now, the far-field components are obtained by substituting in (12.37)
and (12.38):
(1+cosf) sinu sinv

e i v (12.73)
+COS
E(p:Ccosgo( )sinusinv
u v
where:
. e_j,Br
C= J/BLxLyEO - )
u:%sinecosgo;
L
v:’Bysinesin(p.

The far-field expressionsin (12.73) would be identical to those of the
aperture mounted on aground plane if cos@ werereplaced by 1. Thus,
for small values of 4, the patterns of both apertures are practically
identical.

An exact analytical evaluation of the directivity is difficult.
However, according to the approximations made, the directivity formula
derived in (12.66) should provide accurate enough value. According to
(12.66), the directivity isthe same as in the case of the aperture mounted
on aground plane.
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6. Thetapered rectangular apertureon a ground plane

The uniform rectangular aperture has the maximum possible effective
area (for an aperture-type antenna) equal to its physical area. Thisalso
implies that it has the highest possible directivity for al constant-phase
excitations of arectangular aperture. However, directivity is not the only
important factor in the design of an antenna. A factor that frequently
comes into a conflict with the directivity isthe side-lobe level (SLL).
The uniform distribution excitation produces the highest SLL of all
constant-phase excitations of arectangular aperture. It will be shown
that the reduction of SLL can be achieved by tapering the equivalent
sources distribution from a maximum at the aperture’ s center to zero
values at its edges.

One very practical aperture of tapered source distribution is the open
rectangular waveguide. The dominant (TE,g) mode has the following

distribution:
E _q 7,)( —L /2<X <L, /2 1574
2 = YROS X\ 2y <L, 12 (12.74)

X

|

The general procedure for the far-field analysisis the same as before (in
Section 4). The only differenceisin the field distribution. Again, only

theintegral .7, isto be evaluated.
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L, /2 L,/2
JE=2F, j COS(L %je‘ﬁ“”gwwd% j elfysnesnogy (12.75)

-L,/2

Theintegral of the y variable was aready encountered in (12.41):

L
L, /2 én{ﬁ;y§n0§n¢}

_ iysinosng 4/ _
()= | e dy' =L, AL

L, /2

(12.76)
sn@ésing

Theintegral of the x variableiseasily solved:

L/2
72' . .
| (X) = cos(— X)e‘ﬂ*’s”“‘m’dx’ =
3.0
L /2 7
_ J cos(L—x'j[cos(,B%sinecosgoH jsin(AxX'sindcosg) |dx =

-L, /2

L./2
% {cos{(l_——ﬁsnecosqoj x’} + cosKLl+,Bsin9cosgoj x’}}dx#

-L,/2
+ cosﬁﬂsinecosrpﬂ_lj x’}}d)(

X

. L2
i . T
+E J {sn{(ﬂsnecosgo—l_—}(_

X

cos(’B Xsinécose
_zlL, 2
= | (X) = 5 - > IBL
(j ———Xgn@cosy
2 2

L
ﬁé‘xsinecosgoj Sin{'BZySinﬁsmcﬂ}

COS(
= Jy =7EL,L, (12.77)

pL, . . j
2 ~Ysd&in@sin
(”) pL X3|n6?cos¢ ( 2 4

2

~
v \
u

To derive the far-field components, (12.77) is substituted in (12.32) and
(12.33).
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_ (12.78)
_ cosu  sinv

E, =——Ccosécosg
2 , (zY| V
u —_ —
2

4

where:

_ e—jﬁr
C= JIBLxLyEO :

2nr
u=%sinecosqo;

L
v:ﬂzysinesingo.

Principle plane patterns
In the E-plane, the aperture is not tapered. As expected, the E-plane
principal pattern isthe same as that of a uniform aperture.

E-plane (¢ =90°):

sin('gl'ysine]
E, = ﬁLZ (12.79)
= Ysné
7 )
H-plane (¢ =0°):
cos(ﬁl‘xsinej
E_ =cosd 2 (12.80)
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H-plane pattern — uniform vs. tapered illumination (L, =31):

—— uniform
— tapered

The lower SLL of the tapered-source far field is obvious. It is better
seen in the rectangular plot given below. The price to pay for the lower
SLL isthe decrease in directivity (the beamwidth of the major lobe

increases).
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The above example of L, =34 isillustrative on the effect of source

distribution on the far-field pattern. However, amore practical example
IS the rectangul ar-waveguide open-end aperture, where the waveguide
operatesin adominant mode, i.e. 4,/2< L, < A,. Here, 4, isthe

wavelength in open space (4, =c/ f,). Consider the caseL, =0.751.

The principal-plane patterns for an aperture on a ground plane look like
this:
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0 —— H-plane
? —— E-plane

180

In the above example, a practical X-band waveguide was considered
whose cross-section has the following sizes: L, =2.286 cm, L, =1.016

cm. Obviously, 4, =3.048 cm, and f;=9.84 GHz.

The case of a dominant-mode open-end waveguide radiating in free
space can be analyzed following the approaches outlined in this Section
and in Section 5.

The calculation of beamwidths and directivity is analogous to
previous cases. Only the final results will be given here for the case of
the x-tapered aperture on a ground plane.

Directivity: D, = %(% LXLy] (12.81)
T
Effectivearea Ay = % L,L, =0.81A, (12.82)
T

Note the decrease in the effective area
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Half-power beamwidths:

HPBW; = 50/6/51 deg. (= HPBW; of the uniform aperture) (12.83)

y

HPBW, = fi/i deg. (> HPBW, of the uniform aperture) (12.84)

X

The above results are approximate. Better results would be obtained
if the following factors were taken into account:

e the phase constant of the waveguide £ isnot equal to the free-

space phase constant 5, = w4/ o, ; it is dispersive;

¢ the abrupt termination at the waveguide open end introduces
reflection, which affects the field at the aperture;

¢ there are strong fringe currents at the waveguide walls, which
contribute to the overall radiation.
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