LECTURE 13: Aperture Antennas—Part ||
(Rectangular horn antennas. Circular horns.)

1. Rectangular horn antennas
Horn antennas are extremely popular in the microwave region (above
1 GHz). Horns provide high gain, low VSWR (with waveguide feeds),

relatively wide bandwidth, and they are not difficult to make. There are
three basic types of rectangular horns:

>

(a) H-plane sectoral horn. (b) E-plane sectoral horn.

3

(c¢) Pyramidal horn.

The horns can be flared exponentially, too. This provides better
matching in a broad frequency band, but is technologically more difficult
and expensive.

The rectangular horns are ideally suited for rectangular waveguide
feeders. The horn acts as agradual transition from a waveguide mode to
afree-space mode of the EM wave. When the feeder isacylindrical
waveguide, the antennais usually a conical horn.

Why isit necessary to consider the horns separately instead of
applying the theory of waveguide aperture antennas directly to the
aperture of the horn? It is because the so-called phase error occurs due



to the difference between the length from the center of the feeder to the
center of the horn aperture and the length from the center of the feeder to
the horn edge. This complicates the analysis, and makes the results for
the waveguide aperturesinvalid.

1.1. The H-plane sectoral horn
The following geometry parameters will be used often in the
subsequent analysis.

A
A 4

R,

Cross-section at the H-plane (x-2)
of an H-plane sectoral horn

2
15 =RS +(§) (13.1)

o, =arctan %} (13.2)

R, =(A-a) '%j—% (13.3)

The two fundamental dimensions for the construction of the horn are A

and R, .




The tangential fields arriving at the input of the horn are the
transverse field components of the waveguide dominant mode TE;j:

E, = Eoc;os(z xje_j'ggZ

a (13.4)
H,=-E,/Z,
where:
Zy= l IS the wave impedance of the TE;o mode;

2
By = Poy|1- (%} is the propagation constant of the TE;, mode.

Here, £, =w\ ue =2r/A. Thefield that isilluminating the aperture of

the horn is essentially an expanded version of the waveguide field. Note
that the wave impedance of the flared waveguide (i.e. the horn) gradually
approaches the intrinsic impedance of open space 77, as A (the H-plane
width) increases. The complication in analysis arises from the fact that
the waves arriving at the horn aperture are not in phase due to the
different path lengths from the horn apex. The aperture phase variation
isgiven by:

g 1B(R-R) (13.5)
Since the aperture is not flared in the y-direction, the phaseis uniformin
this direction.

R=JR2+x% =R, 1+[l) zRO[Hl[;O” (13.6)

Ry 2
The last approximation holdsif x<« R,, or A/2<« R,. Then, one can

assume that
2

1x
R-Ry==—
R=2R
Using (13.7), the field at the aperture is approximated as:

(13.7)



Eocos( j _Jﬁx (13.8)

Thefield at the aperture pI ane outside the aperture is assumed equal to
zero. Thefield expression (13.8) is substituted in the integral 7 (see
Lecture 12):

~E _ J'J‘ an ()(’ y/)ej,B(x’sianos¢)+)/sin6’sin(o)d)(dy/ (13.9)

+A/2 P —JL)(2 tb/2

JE=E j cos(— x’j 2R, glBsndcospX gy f elAsngsney gy (13.10)
-A/2 A —b/2

The second integral has been aready encountered but the first integral’s

solution is rather cumbersome. The above integral (13.10) reducesto:

sin(ﬂbsiné?singoj
Jf—Eo[ [0 q))} b— (13.11)
2\ 5 'b;sinesin(o
where: ) :
| 0 J;'b(ﬂsnecosqw jz c S c LS ]
0,p)=¢€ | [C(s)) - jS(s5) - C(s) + jS(S) (13.12)
J;R;[ﬂsneco&p—j
t+e [C(t7) - jS(ty) - C(t) + jS(t)]
and

[
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,_ |1 (L BA 7R).
= E,BPO(+ 5 Ropu+ Aj’

U=sinégcosg.
C(x) and S(x) are Fresnel integrals, which are defined as:
C(x) =jcos(%rzjdr; C(=X) =—C(X)
. (13.13)
S(x) = sin(%rzjdr; S(—x) = —S(X)
0

More accurate evaluation of JyE can be obtained if the approximation in
(13.6) is not made, and the an is substituted in (13.9) as:

E, =E cos(% x} e_jﬁ(m_%)

(13.14)
—E,e"1PR cos(z xj A
A
The far fields can be now calculated as (see Lecture 10):
— 1B
E,= j,Be (1+cos@)sing- .y
:_’j’;r (13.15)
E, =| 1+ cos@) cosg- J &
=10 - ( )CosQ-.J
or ] )
(Bb
£ ipED 7R, e 17" (1+cos¢9j sm( o Snosing
podar (2 Dsnesing | (1310

| (H,(p)(ésin(p+¢c05(p)



The amplitude pattern of the H-plane sectoral horn is obtained as:

1+ cosé sin(ﬂzbsinesingoj
Ez( j -1(6,9) (13.17)
2 @sinesin
5 ®

Principal-plane patterns

1+ cosé ( anmgoj
E-plane (¢ =90°): F(6) =( j (13.18)
2 sn99n¢

It can be shown that the second factor of (13.18) is exactly the pattern of
auniform line source of length b along the y-axis.

1+ cosé@
F,(0)= - (0) =

H-plane (¢ =0°): 13.19
Planelp =00 1, cs8  1(0,9=0) (1319

2 1(0=0,0=0)

The H-plane pattern in terms of the | (8, ¢) integral is an approximation,
which is a consequence of the phase approximation madein (13.7).
Accurate value for f, (@) can be found by integrating numerically the

fieldasgivenin (13.14), i.e.
+Al2

fy (6) o< j cos( Aj IR gifsineX (13.20)
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The directivity of the H-plane sectoral horn is calculated by the general
directivity expression for aperture-type antennas (for derivation, see
Lecture 12):

”Eds

D. = Arr |s,
e ”| E, I ds
Sa
The integral in the denominator is proportional to the total radiated
power:

(13.21)

R +b/2+A/2
2l = [[IE,FaS= [ [ |Eo| cos (A jd)(d)/_
Sa ~b/2-A/2 (13.22)
_|g RAb
-[Ef S

In the solution of the integral in the numerator of (13.21), thefield is
substituted with its phase approximated asin (13.8). Thefinal resultis:

b 32 4
D,, _z?(ﬂ)ggh /1’2[ el (AD), (13.23)
where
8
8t:?
et = {1C(p) ~Clpa) +[S(p) - S(pI

D, = Zﬁ{ } pzzzﬁ{—ké}

{2 =

The factor &, explicitly shows the aperture efficiency associated with the
aperture taper. The factor €Sh IS the aperture efficiency associated with
the aperture phase distribution.



A family of universal directivity curvesis given below. From this
curves, it isobvious that for agiven axial length R, at agiven

wavelength, there is an optimal aperture width A corresponding to the
maximum directivity.
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It can be shown that the optimal directivity is obtained if the relation
between Aand R, is:

A= [31R, (13.24)
or

A_ 3R (13.25)
2\ 2



1.2. The E-plane sectoral horn

A
y

Re

Cross-section at the E-plane (y-2)
of an E-plane sectoral horn

The geometry of the E-plane sectoral horn in the E-plane (y-z plane)
is analogous to that of the H-plane sectoral horn in the H-plane. The
analysisisfollowing the same lines as in the previous section. Thefield

at the aperture is approximated by (compare with (13.8)):
B2
T =4
E, =E, cos(Z Xj e R (13.26)

Here, the approximations

R=R2+y2 =R, /1+[%j ~ R0[1+;(g0) } (13.27)

1y?
R-Ry===— 13.28
are made, which are analogous to (13.6) and (13.7).

and
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Theradiation field is obtained as:

(AR, 5B ’
4a 7R, € iBr J(Zj{ > sm&sm(pj " R
E= e ésin@+ @Ccos
B85 2 (6sing+pcos)
pa (13.29)
cos| ~——sin@cose y
_(1+cosb) (

> |C(ry) — iS(r,) —C(ry) + jS(ry) ]

2
1- ('Bzasnecosgoj

The arguments of the Fresnel integrals used in (13.29) are:

_ | A [ B R PBgnosineg|:

= ﬂR)( > R > smesmgoj,
3 5 8 (13.30)

r, = a(+E—F~>075in6?sin(pj

Principal -plane patterns
The normalized H-plane pattern isfound by substituting ¢ =0 in
(13.29).

1 o cos(ﬂasinej
() = +02°S 2 (13.31)
(’82 asin@j

The second factor in this expression is the pattern of a uniform phase
cosine-amplitude tapered line source.
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The normalized E-plane pattern isfound by substituting ¢ =90" in
(13.29).

E(H) _ 1+cosé?

| fe(0)]=

(13.32)

_1+cosf |[C(r,)- C(r)] +[S(ry) - S(r)°
2 4[C2(I’9=0) + Sz(re:o)]

Here, the arguments of the Fresnel integrals are calculated for ¢ =90°:
= i(——— R ’BBsmeJ

ik 23 o (13.33)
r, = %(JFE_ Ro%sinej
and
fy_o =1(0=0)= g % (13.34)

Similar to the H-plane sectoral horn, the principal E-plane pattern can be
accurately calculated if no approximations for the phase distribution are
made. Then, the function f¢ (&) hasto be calculated by numerical

integration of (compare with (13.20)):
B/2

fe(@) e [ & NRH el gy (13.35)

-B/2
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Directivity
The directivity of the E-plane sectoral horn isfound in a manner
analogous to the H-plane sectoral horn.

_a328 E 4 E

De = E;Egph = ?qephaB, (13.36)
where:
T
e _C*(q)+S*(a) B

Eph = 7 , q_ﬁ.
Ry

A family of universal directivity curves (i Dg vs. 7) IS given below.
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The optimal relation between the flared height B and the horn length R,
IS
B=,/21R, (13.37)

1.3. The pyramidal horn

The pyramidal horn is probably the most popular antennain the
microwave frequency ranges (from =1 GHz up to =18 GHz). The
feeding waveguideis flared in both directions, the E-plane and the H-
plane. All results are acombination of the E-plane sectoral horn and the
H-plane sectoral horn analysis. The field distribution of the aperture
electricfieldis:

2 2

_jﬂ(XJ]
T 2| pEZ  H?2
E, = EOCOS(Z xje R (13.38)

The E-plane principal pattern of the pyramidal horn is the same as the E-
plane principal pattern of the E-plane sectoral horn. The same holds for
the H-plane patterns of the pyramidal horn and the H-plane sectoral horn.

The directivity of the pyramidal horn can be found rather simply by
introducing the phase efficiency factors of both planes and the taper
efficiency factor of the H-plane:

D, = % £t el (13.39)
where:

& -8,

t 7[2 !

2
£oh = %{[C(pl) -C(p)]* +[S(R) - S(PI'}
) 1 ) 17, 1(AY 1
P = 2\/5[1+§] P2 = 2ﬁ{—1+§}t _§£Zj R4
e C%q)+S%(q) B

e = , = .
i g’ J2ARE
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The gain of ahornisusualy very closeto its directivity because the
radiation efficiency is very good (low losses). The directivity (and gain)
as calculated with (13.39) is very close to measurements. The above
expression is aphysical optics approximation, and it does not take into
account only the multiple diffractions and the diffraction at the edges of
the horn arising from reflections from the horn interior. These
phenomena, which are unaccounted for, lead to minor fluctuations of the
measured results about the prediction of (13.39). That iswhy horns are
often used as gain standards in antenna measurements.

The optimal directivity of an E-plane hornisachieved at q=1 (see

also (13.37)), EFE,h =0.8. The optimal directivity of an H-plane hornis

achieved at t = 3/8 (see also (13.24)), 5g'h =0.79. Thus, the optimal
horn has a phase aperture efficiency of

Epn = EpnEpn = 0.632 (13.40)
The total aperture efficiency includes the taper factor, too:
Epn = EEpnEpn = 0.81-0.632=0.51 (13.41)

Therefore, the best achievable directivity for arectangular waveguide
horn is about half that of a uniform rectangular aperture.

It should be also noted that best accuracy is achieved if £, and &,

are calculated numerically without using the second-order phase
approximationsin (13.7) and (13.28).
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Optimum horn design

Usually, the optimum (from the point of view of maximum gain)
design of ahorn is desired because it renders the shortest axial length.
The whole design can be actually reduced to the solution of asingle
fourth-order equation. For ahorn to be realizable,

Re=R, =R (13.42)
must hold.
/ |
< RI)E T R|)_| § —
bI — ME\ | aI | S T B
l: RE N v
; Ry v
It can be shown that
Rl__ A2 _ A (13.43)
R, A/2-al2 A-a
ROE __Bl2 _ B (13.44)

R. B/2-b/2 B-b
The optimum-gain condition in the E-plane (13.37) is substituted in
(13.44) to yield
B?—bB-21R. =0 (13.45)
Thereisonly one physically meaningful solution to (13.45):

B:%(b+«/b2+8/tRE) (13.46)

17



Similarly, the maximum-gain condition for the H-plane of (13.24)
together with (13.43) yields

A—af A? (A-a)
Segi) IS P W Sl 13.47
=284 a7
Since R: = R, must be fulfilled, (13.47) is substituted in (13.46), which
gives
B 1{b+\/b2 +wj (13.48)
2 3
Substituting in the expression for the horn’s gain
A
G= ?gapAB (13.49)
gives the relation between A, the gain G and the aperture efficiency gjp:
A 1 > 8A(a—a)
G=—¢,A=| b+, /b +—= 13.50

2 2174
A _apdy IO, G 2’12 =0 (13.51)
87E 327 ey,
Equation (13.51) is the optimum pyramidal horn design equation. The
optimum-gain value of &,, =0.51 isusually used, which makes the

eguation afourth-order polynomial equation. Itsroots can be found
anayticaly (which is not particularly easy), and numerically. Ina

numerical solution, the first guessis usualy set at A =0.451G .

Horn antennas operate well over bandwidth of about 50%. However,
performance is optimal only at a given frequency. To understand better
the frequency dependence of the directivity and the aperture efficiency,
the plot of these curves for an X-band (8.2 GHz to 12.4 GHz) horn fed
by WR90 waveguide is given below.

18



Directivity and aperture efficiency of standard gain rectangular horn for
WR90 (a=0.9 in.=2.286 cmand b=0.4 in. = 1.016 cm):

23.5 T T T T T T T 1 !
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23.0F 40.55
Z <&
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5 | 050 =
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S
2 i =
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3 20l E
A - 40.40 §
215}
. 0.35
21.0 i ] 1 ] | 1 ] 1 ] 1 > 0.30
8 9 10 11 12 13

Frequency (f), GHz

The gain increases with frequency, which istypical for aperture
antennas. However, the curve shows saturation at higher frequencies.
Thisis due to the decrease of the aperture efficiency, which isaresult of
an increased phase error.
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The pattern of a*“large’ pyramidal horn ( f =10.525 GHz, feeder is
waveguide WR90):

harn_Irg.ant [Maodified)
MSL [dB]  MSP[*) HFEW 7]

I? |-l].E| |l].l]| |2l].l]|
W [(38] [0] [2A0]

20



Comparison of the E-plane patterns of a waveguide open end, “small”
pyramidal horn and “large” pyramidal horn:
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Note the multiple side lobes and the significant back lobe. They are due

to diffraction at the horn edges, which are perpendicular to the E field.
To reduce edge diffraction, enhancements are proposed for horn
antennas such as

e Corrugated horns

e Aperture-matched horns
Corrugated horns taper the E field in the x-direction, thus, reducing
side-lobes and diffraction from edges. The overall main beam becomes
smooth and nearly rotationally symmetrical (esp. for A= B). Thisis
important when the horn is used as a feed to areflector antenna.
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Comparison of the H-plane patterns of a waveguide open end, “small”
pyramidal horn and “large”’ pyramidal horn:
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2. Circular apertures
2.1. A uniform circular aperture

The uniform circular aperture is approximated by a circular opening
in aground plane illuminated by a uniform plane wave normally incident
from behind.

Thefield distribution is described as.
E,.=%XE, p'<a (13.52)
Theradiation integral is.
Jx =Ef[e”Tas (13.53)
Sa

The integration point is at:
I'=Xp' cosg’ + yp'sing’ (13.54)
In (13.54), cylindrical notations are used.
=r-"=p’sind(cospcosy’ +singsing’) =

o ) (13.55)
= p’sinécos(¢—¢')
Hence, (13.53) becomes:
2
GE=E) { Je” ”'g”(’“’““’"d(p’} pldp’ =
oL o (13.56)

a
=27Eo[ p'Jo(Bp'sin6)d p
0

Here J, isthe Bessel function of the first kind of order zero. The
following istrue:
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j xJo(X)dx = xJ (X) (13.57)
Applying (13.57) to (13.56) leads to:
x S Asing

In this case, the equivalent magnetic current formulation of the
equivalence principle is used (see Lecture 10). Thefar field is obtained
as.

J,(Basing) (13.58)

Qi

E :(écosgo—gbcosesingo) jB——JrC =
2y
. e’ 2J,(Basinb) (1359
=(@cosp—pcosdsing) a’ L
(6cosp-¢ 0)iBEs owr Basing
Principal -plane patterns
2J,(Basing

E-plane (¢ =0): E,(0)= fﬂ(fsine ) (13.60)
H-plane (¢ =90°): E, () =cosf- ZJTB(ISZ:;H) (13.61)
The 3-D amplitude pattern:

E(0,9) =\1-sin?gsing. 23%2_‘:2 9) (13.62)

f(6)
The larger the aperture, the less significant is the cosé factor in (13.61)

because the main beamin the @ = 0 direction isvery narrow and in this
small solid angle cosé = 1.
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Example plot of the principal-plane patterns for a=3A4:
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The half-power angle for the f (8) factor is obtained at
Pasind=1.6. So, the HPBW for large apertures (a> A) isgiven by

161 216 5842 deg (1363)
pa 2a

pa
For example, if the diameter of the apertureis a=104, then
HPBW =5.84".

The side-lobe level of any uniform circular apertureis 0.1332 (-17.5
dB).

Any uniform aperture has unity taper aperture efficiency, and its
directivity can be found only in terms of its physical area:

A A 2
Du :?Ap :?ﬂ'a (1364)

HPBW =26,,, = 2arcsin[
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2.2. Tapered circular apertures

Many practical circular aperture antennas can be approximated as
radially symmetric apertures with field amplitude distribution, whichis
tapered from the center toward the aperture edge. Then, the radiation
integral (13.56) has a more general form:

JE =21 [ Bo(p))p'do(fpsin6)dp’ (13.65)

0
In (13.65), it is still assumed that the field has axial symmetry, i.e. it does
not depend on ¢’. Often used approximation is the parabolic taper of

order n:
~2 "
Ea(p'){l—(%j } (13.66)

Thisis substituted in (13.65) to cal culate the respective component of the
radiation integral:

, 2
ZﬂEOI{ ( ”pao(ﬂpsne)dp (13.67)

Thefollowing rel ailon is used to solve (13.67):

j (1- X2)" xJ (ox)dx = Ennl' 3...(b) (13.68)

In our case, X=p /a and b= Basind. Then J5(#) reducesto

~E _ ﬂ'az
750)= By f (0.0, (13.69)
where:
2" (n+1)1J.,,(Basing)
(pasing)™

is actually the normalized pattern function (neglecting the angular factors
such as cose and cosédsing.

f(6,n) = (13.70)
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The aperture taper efficiency is calculated to be;

2
)
n+1
4T ocU-0) (1-c)
C?+ E!
n+1 2n+1
Here, C denotes the pedestal height. The pedestal height is the edge
field illumination relative to the illumination at the center.

The properties of several common tapers are given in the tables
below. The parabolic taper (n=1) provides lower side lobesin
comparison with the uniform distribution (n = 0) but it has a broader
main beam. Thereis aways atrade-off between low side-lobe levels
and high directivity (small HPBW). More or less optimal solutionis
provided by the parabolic-on-pedestal aperture distribution. Moreover,
this distribution approximates very closely the real case of circular
reflector antennas, where the feed antenna pattern is intercepted by the
reflector only out to the reflector rim.

(13.71)

a. Parabolic taper E,(p)
AN I n=0
Ep) = [1 B <p_> :, L0 o
a
=1
_ 2" (n + 1), 1(Ba sin 6) \
f(6,n) = — 0.5
(Ba sin 6) '
n=2
[ L NV
a 0 a P
Side Lobe Normalized
HP Level Pattern
n (rad) (dB) & f(6, n) Distribution
A 2] i
0 1.02 = -176 1.00 2/1(Ba sin 6) i
2a Ba sin 0 Uniform
A 8/,(Ba sin 6
1 127 = ~246 0.75 8J2(pa sin 9) i
2 (Ba sin 6)° Parabolic
A 48J5(Ba sin
2 147 = ~ £/(Ba sin 6) i
» 30.6 0.55 (Ba s 0)? Parabolic squared
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b. Parabolic taper on a pedestal

o -carofi- (2)]

1-C
Cf(6,n=0) + 1 f(6, n)
f(6,n, C) =
1-C
C + .
n+1 p
n=1 n=
Edge - -
Illumination Side Lobe Side Lobe
HP Level HP Level
Csn C (rad) (dB) & (rad) (dB) &
-8 0.398 1.12 A -21.5 0.942 1.14 A —-24.7 0.918
2a 2a
-10 0.316 1.14 A —-223 0.917 1.17 A -27.0 0.877
2a 2a
-12 0.251 1.16 A —-229 0.893 1.20 A —-29.5 0.834
2a 2a
-14 0.200 1.17 A —-234 0.871 1.23 A -31.7 0.792
2a 2a
-16 0.158 1.19 A -23.8 0.850 1.26 A -33.5 0.754
2a 2a
—-18 0.126 1.20 A -24.1 0.833 1.29 A —-34.5 0.719
2a 2a
-20 0.100 1.21 A —-24.3 0.817 1.32 A —-34.7 0.690
2a 2a
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