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LECTURE 13: Aperture Antennas – Part II
(Rectangular horn antennas. Circular horns.)

1. Rectangular horn antennas
Horn antennas are extremely popular in the microwave region (above

1 GHz). Horns provide high gain, low VSWR (with waveguide feeds),
relatively wide bandwidth, and they are not difficult to make. There are
three basic types of rectangular horns:

The horns can be flared exponentially, too. This provides better
matching in a broad frequency band, but is technologically more difficult
and expensive.

The rectangular horns are ideally suited for rectangular waveguide
feeders. The horn acts as a gradual transition from a waveguide mode to
a free-space mode of the EM wave. When the feeder is a cylindrical
waveguide, the antenna is usually a conical horn.

Why is it necessary to consider the horns separately instead of
applying the theory of waveguide aperture antennas directly to the
aperture of the horn? It is because the so-called phase error occurs due
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to the difference between the length from the center of the feeder to the
center of the horn aperture and the length from the center of the feeder to
the horn edge. This complicates the analysis, and makes the results for
the waveguide apertures invalid.

1.1. The H-plane sectoral horn
The following geometry parameters will be used often in the

subsequent analysis.

Cross-section at the H-plane (x-z)
of an H-plane sectoral horn
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The two fundamental dimensions for the construction of the horn are A
and HR .
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The tangential fields arriving at the input of the horn are the
transverse field components of the waveguide dominant mode TE10:
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is the wave impedance of the TE10 mode;
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is the propagation constant of the TE10 mode.

Here, 0 2 /β ω µε π λ= = . The field that is illuminating the aperture of
the horn is essentially an expanded version of the waveguide field. Note
that the wave impedance of the flared waveguide (i.e. the horn) gradually
approaches the intrinsic impedance of open space η , as A (the H-plane
width) increases. The complication in analysis arises from the fact that
the waves arriving at the horn aperture are not in phase due to the
different path lengths from the horn apex. The aperture phase variation
is given by:

0( )j R Re β− − (13.5)
Since the aperture is not flared in the y-direction, the phase is uniform in
this direction.
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The last approximation holds if 0x R , or 0/ 2A R . Then, one can
assume that
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Using (13.7), the field at the aperture is approximated as:
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The field at the aperture plane outside the aperture is assumed equal to
zero. The field expression (13.8) is substituted in the integral E

yJ (see

Lecture 12):
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The second integral has been already encountered but the first integral’s
solution is rather cumbersome. The above integral (13.10) reduces to:
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where:
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and
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sin cosu θ ϕ= .
( )C x and ( )S x are Fresnel integrals, which are defined as:
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More accurate evaluation of E
yJ can be obtained if the approximation in

(13.6) is not made, and the
yaE is substituted in (13.9) as:
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The far fields can be now calculated as (see Lecture 10):
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The amplitude pattern of the H-plane sectoral horn is obtained as:
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Principal-plane patterns

E-plane ( 90ϕ = ):
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It can be shown that the second factor of (13.18) is exactly the pattern of
a uniform line source of length b along the y-axis.

H-plane ( 0ϕ = ):
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The H-plane pattern in terms of the ( , )I θ ϕ integral is an approximation,
which is a consequence of the phase approximation made in (13.7).
Accurate value for ( )Hf θ can be found by integrating numerically the
field as given in (13.14), i.e.
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The directivity of the H-plane sectoral horn is calculated by the general
directivity expression for aperture-type antennas (for derivation, see
Lecture 12):
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The integral in the denominator is proportional to the total radiated
power:
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In the solution of the integral in the numerator of (13.21), the field is
substituted with its phase approximated as in (13.8). The final result is:
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The factor tε explicitly shows the aperture efficiency associated with the

aperture taper. The factor H
phε is the aperture efficiency associated with

the aperture phase distribution.
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A family of universal directivity curves is given below. From this
curves, it is obvious that for a given axial length 0R at a given
wavelength, there is an optimal aperture width A corresponding to the
maximum directivity.

It can be shown that the optimal directivity is obtained if the relation
between A and 0R is:

03A Rλ= (13.24)

or

03
A R

λ λ
= (13.25)
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1.2. The E-plane sectoral horn

Cross-section at the E-plane (y-z)
of an E-plane sectoral horn
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The geometry of the E-plane sectoral horn in the E-plane (y-z plane)
is analogous to that of the H-plane sectoral horn in the H-plane. The
analysis is following the same lines as in the previous section. The field
at the aperture is approximated by (compare with (13.8)):
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are made, which are analogous to (13.6) and (13.7).
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The radiation field is obtained as:
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The arguments of the Fresnel integrals used in (13.29) are:
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Principal-plane patterns
The normalized H-plane pattern is found by substituting 0ϕ = in

(13.29).
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The second factor in this expression is the pattern of a uniform phase
cosine-amplitude tapered line source.
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The normalized E-plane pattern is found by substituting 90ϕ = in
(13.29).
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Here, the arguments of the Fresnel integrals are calculated for 90ϕ = :

1 0
0

2 0
0

sin ;
2 2

sin
2 2

B B
r R

R

B B
r R

R

β β θ
π

β β θ
π

 = − − 
 

 = + − 
 

(13.33)
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Similar to the H-plane sectoral horn, the principal E-plane pattern can be
accurately calculated if no approximations for the phase distribution are
made. Then, the function ( )Ef θ has to be calculated by numerical
integration of (compare with (13.20)):
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Directivity
The directivity of the E-plane sectoral horn is found in a manner

analogous to the H-plane sectoral horn.
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A family of universal directivity curves ( ED
a

λ
vs. 0R

λ
) is given below.
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The optimal relation between the flared height B and the horn length 0R
is:

02B Rλ= (13.37)

1.3. The pyramidal horn
The pyramidal horn is probably the most popular antenna in the

microwave frequency ranges (from 1≈ GHz up to 18≈ GHz). The
feeding waveguide is flared in both directions, the E-plane and the H-
plane. All results are a combination of the E-plane sectoral horn and the
H-plane sectoral horn analysis. The field distribution of the aperture
electric field is:
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The E-plane principal pattern of the pyramidal horn is the same as the E-
plane principal pattern of the E-plane sectoral horn. The same holds for
the H-plane patterns of the pyramidal horn and the H-plane sectoral horn.

The directivity of the pyramidal horn can be found rather simply by
introducing the phase efficiency factors of both planes and the taper
efficiency factor of the H-plane:
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The gain of a horn is usually very close to its directivity because the
radiation efficiency is very good (low losses). The directivity (and gain)
as calculated with (13.39) is very close to measurements. The above
expression is a physical optics approximation, and it does not take into
account only the multiple diffractions and the diffraction at the edges of
the horn arising from reflections from the horn interior. These
phenomena, which are unaccounted for, lead to minor fluctuations of the
measured results about the prediction of (13.39). That is why horns are
often used as gain standards in antenna measurements.

The optimal directivity of an E-plane horn is achieved at 1q = (see

also (13.37)), 0.8E
phε = . The optimal directivity of an H-plane horn is

achieved at 3/8t = (see also (13.24)), 0.79H
phε = . Thus, the optimal

horn has a phase aperture efficiency of
0.632P H E

ph ph phε ε ε= = (13.40)

The total aperture efficiency includes the taper factor, too:
0.81 0.632 0.51P H E

ph t ph phε ε ε ε⋅= = ⋅ = (13.41)

Therefore, the best achievable directivity for a rectangular waveguide
horn is about half that of a uniform rectangular aperture.

It should be also noted that best accuracy is achieved if H
phε and E

phε
are calculated numerically without using the second-order phase
approximations in (13.7) and (13.28).
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Optimum horn design
Usually, the optimum (from the point of view of maximum gain)

design of a horn is desired because it renders the shortest axial length.
The whole design can be actually reduced to the solution of a single
fourth-order equation. For a horn to be realizable,

E H PR R R= = (13.42)
must hold.
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It can be shown that
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− −
(13.43)

0 / 2

/ 2 / 2

E

E

R B B

R B b B b
= =

− −
(13.44)

The optimum-gain condition in the E-plane (13.37) is substituted in
(13.44) to yield

2 2 0EB bB Rλ− − = (13.45)
There is only one physically meaningful solution to (13.45):

( )21
8

2 EB b b Rλ= + + (13.46)
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Similarly, the maximum-gain condition for the H-plane of (13.24)
together with (13.43) yields

( )2

3 3H

A aA a A
R A

A λ λ
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Since E HR R= must be fulfilled, (13.47) is substituted in (13.46), which
gives

( )2 81

2 3

A A a
B b b

 −
= + +  

 
(13.48)

Substituting in the expression for the horn’s gain

2

4
apG AB

π ε
λ

= (13.49)

gives the relation between A, the gain G and the aperture efficiency 2
apε :

2
2

4 1 8 ( )

2 3ap
A a a

G A b b
π ε

λ
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(13.50)

2 2 4
4 3

2 2

3 3
0

8 32ap ap

bG G
A aA A

λ λ
πε π ε

⇒ − + − = (13.51)

Equation (13.51) is the optimum pyramidal horn design equation. The
optimum-gain value of 0.51apε = is usually used, which makes the

equation a fourth-order polynomial equation. Its roots can be found
analytically (which is not particularly easy), and numerically. In a
numerical solution, the first guess is usually set at (0) 0.45A Gλ= .

Horn antennas operate well over bandwidth of about 50%. However,
performance is optimal only at a given frequency. To understand better
the frequency dependence of the directivity and the aperture efficiency,
the plot of these curves for an X-band (8.2 GHz to 12.4 GHz) horn fed
by WR90 waveguide is given below.



19

Directivity and aperture efficiency of standard gain rectangular horn for
WR90 ( 0.9a = in. = 2.286 cm and 0.4b = in. = 1.016 cm):

The gain increases with frequency, which is typical for aperture
antennas. However, the curve shows saturation at higher frequencies.
This is due to the decrease of the aperture efficiency, which is a result of
an increased phase error.
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The pattern of a “large” pyramidal horn ( 10.525f = GHz, feeder is
waveguide WR90):
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Comparison of the E-plane patterns of a waveguide open end, “small”
pyramidal horn and “large” pyramidal horn:

Note the multiple side lobes and the significant back lobe. They are due
to diffraction at the horn edges, which are perpendicular to the E field.
To reduce edge diffraction, enhancements are proposed for horn
antennas such as

• Corrugated horns
• Aperture-matched horns

Corrugated horns taper the E field in the x-direction, thus, reducing
side-lobes and diffraction from edges. The overall main beam becomes
smooth and nearly rotationally symmetrical (esp. for A B≈ ). This is
important when the horn is used as a feed to a reflector antenna.
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Comparison of the H-plane patterns of a waveguide open end, “small”
pyramidal horn and “large” pyramidal horn:
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2. Circular apertures
2.1. A uniform circular aperture

The uniform circular aperture is approximated by a circular opening
in a ground plane illuminated by a uniform plane wave normally incident
from behind.

x y

z

E
a

The field distribution is described as:

0ˆ ,aE xE aρ′= ≤ (13.52)
The radiation integral is:

ˆ
0
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E j r r
x

S

E e dsβ ′⋅ ′= ∫∫J (13.53)

The integration point is at:
ˆ ˆcos sinr x yρ ϕ ρ ϕ′ ′ ′ ′ ′= + (13.54)

In (13.54), cylindrical notations are used.
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ρ θ ϕ ϕ
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(13.55)

Hence, (13.53) becomes:
2
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0 0
0
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a
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E e d d

E J d
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βρ θ ϕ ϕ ϕ ρ ρ

π ρ βρ θ ρ

′ ′− 
′ ′ ′= = 

  

′ ′ ′=

∫ ∫

∫

J

(13.56)

Here 0J is the Bessel function of the first kind of order zero. The
following is true:
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0 1( ) ( )xJ x dx xJ x=∫ (13.57)

Applying (13.57) to (13.56) leads to:

0 12 ( sin )
sin

E
x

a
E J aπ β θ

β θ
=J (13.58)

In this case, the equivalent magnetic current formulation of the
equivalence principle is used (see Lecture 10). The far field is obtained
as:

( )
( ) 2 1

0

ˆ ˆcos cos sin
2

2 ( sin )ˆ ˆcos cos sin
2 sin

j r
E
x

j r

e
E j

r

e J a
j E a

r a

β

β

θ ϕ ϕ θ ϕ β
π

β θθ ϕ ϕ θ ϕ β π
π β θ

= − =

= −

J
(13.59)

Principal-plane patterns

E-plane ( 0ϕ = ): 12 ( sin )
( )

sin

J a
E

aθ
β θθ

β θ
= (13.60)

H-plane ( 90ϕ = ): 12 ( sin )
( ) cos

sin

J a
E

aϕ
β θθ θ

β θ
= ⋅ (13.61)

The 3-D amplitude pattern:
2 2 1

( )

2 ( sin )
( , ) 1 sin sin

sin
f

J a
E

a
θ

β θθ ϕ θ ϕ
β θ

= − ⋅ (13.62)

The larger the aperture, the less significant is the cosθ factor in (13.61)
because the main beam in the 0θ = direction is very narrow and in this
small solid angle cos 1θ ≈ .



26

Example plot of the principal-plane patterns for 3a λ= :

-15 -10 -5 0 5 10 15

0

0.1

0.2
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0.5

0.6

0.7

0.8

0.9

1

6*pi*sin(theta)

E-plane
H-plane

The half-power angle for the ( )f θ factor is obtained at
sin 1.6aβ θ = . So, the HPBW for large apertures (a λ ) is given by

1/ 2
1.6 1.6

2 2arcsin 2 58.4
2

HPBW
a a a

λθ
β β

 
= ≈ = 

 
, deg (13.63)

For example, if the diameter of the aperture is 10a λ= , then
5.84HPBW = .

The side-lobe level of any uniform circular aperture is 0.1332 (-17.5
dB).

Any uniform aperture has unity taper aperture efficiency, and its
directivity can be found only in terms of its physical area:

2
2 2

4 4
u pD A a

π π π
λ λ

= = (13.64)
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2.2. Tapered circular apertures
Many practical circular aperture antennas can be approximated as

radially symmetric apertures with field amplitude distribution, which is
tapered from the center toward the aperture edge. Then, the radiation
integral (13.56) has a more general form:

0 0
0

2 ( ) ( sin )
a

E E J dπ ρ ρ βρ θ ρ′ ′ ′ ′= ∫J (13.65)

In (13.65), it is still assumed that the field has axial symmetry, i.e. it does
not depend on ϕ′ . Often used approximation is the parabolic taper of
order n:

2

( ) 1

n

aE
a

ρρ
 ′ ′ = −  

   
(13.66)

This is substituted in (13.65) to calculate the respective component of the
radiation integral:

( )
2

0 0
0

2 1 ( sin )

na
E E J d

a

ρθ π ρ βρ θ ρ
 ′  ′ ′ ′= −  

   
∫J (13.67)

The following relation is used to solve (13.67):
1

2
0 11

0

2 !
(1 ) ( ) ( )

n
n

nn

n
x xJ bx dx J b

b
++− =∫ (13.68)

In our case, /x aρ′= and sinb aβ θ= . Then ( )E θJ reduces to
2

0( ) ( , )
1

E a
E f n

n

πθ θ=
+

J , (13.69)

where:

( )
1

1
1

2 ( 1)! ( sin )
( , )

sin

n
n

n

n J a
f n

a

β θθ
β θ

+
+

+
+= (13.70)

is actually the normalized pattern function (neglecting the angular factors
such as cosϕ and cos sinθ ϕ .
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The aperture taper efficiency is calculated to be:
2

2
2

1
1

2 (1 ) (1 )
1 2 1

t

C
C

n

C C C
C

n n

ε

− + + =
− −+ +

+ +

(13.71)

Here, C denotes the pedestal height. The pedestal height is the edge
field illumination relative to the illumination at the center.

The properties of several common tapers are given in the tables
below. The parabolic taper ( 1n = ) provides lower side lobes in
comparison with the uniform distribution ( 0n = ) but it has a broader
main beam. There is always a trade-off between low side-lobe levels
and high directivity (small HPBW). More or less optimal solution is
provided by the parabolic-on-pedestal aperture distribution. Moreover,
this distribution approximates very closely the real case of circular
reflector antennas, where the feed antenna pattern is intercepted by the
reflector only out to the reflector rim.
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