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LECTURE 14: Reflector Antennas

Introduction
High-gain antennas are required for long-distance radio

communications (radio-relay links and satellite links), high-
resolution radars, radioastronomy, etc. Reflector systems are
probably the most widely used high-gain antennas. They can
easily achieve gains of above 30 dB for microwave frequencies
and higher. Reflector antennas operate on principles known long
ago from the theory of geometrical optics (GO). The first reflector
system was made by Hertz back in 1888 (a cylindrical reflector fed
by a dipole). However, the art of accurately designing such
antenna systems was developed mainly during the days of WW2
when numerous radar applications evolved.

18.3 m INTELSAT Earth Station (ANT Bosch Telecom), dual reflector
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Aircraft radar

Radio relay tower
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Feed-horn is in focal point

Conical horn primary feed

The simplest reflector antenna consists of two components: a
reflecting surface and a much smaller feed antenna, which often is
located at the reflector’s focal point. Constructions that are more
complex involve a secondary reflector (a subreflector) at the focal
point, which is illuminated by a primary feed. These are called
dual-reflector antennas. The most popular reflector is the parabolic
one. Other reflectors often met in practice are: the cylindrical
reflector, the corner reflector, spherical reflector, and others.
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1. Principles of parabolic reflectors

A paraboloidal surface is described by the equation (see plot b):
2 4 ( ),fF F z aρ ρ′ ′= − ≤ (14.1)

Here, ρ′ is the distance from a point A to the focal point O, where
A is the projection of the point R on the reflector surface onto the
axis-orthogonal plane (the aperture plane) at the focal point. For a
given displacement ρ′ from the axis of the reflector, the point R on
the reflector surface is a distance fr away from the focal point O.

The position of R can be defined either by ( , )fzρ′ , which is a

rectangular pair of coordinates, or by ( , )f fr θ , which is a polar pair

of coordinates. A relation between ( , )f fr θ and F is readily found

from (14.1):
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(14.2)

Other relations to be used later are:
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The axisymmetric paraboloidal reflector is rotationally
symmetric and is entirely defined by the respective parabola, i.e.
by two basic parameters: the diameter D and the focal length F.
Often, the parabola is specified in terms of D and the ratio F/D.
When F/D approaches infinity, the reflector becomes flat.
Commonly used paraboloidal shapes are shown below. When

/ 0.25F D = , the focal point lies in the plane passing through the
reflector’s rim.
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The angle from the feed (focal) point to the reflector’s rim is
related to /F D as:

1
2arctan

4( / )o F D
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 
(14.4)

oθ
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The reflector design problem consists mainly of matching the
feed antenna pattern to the reflector. The usual goal is to have the
feed pattern at about a (–10) dB level in the direction of the rim,
i.e. ( ) 10f oF θ θ= = − dB (0.316 of the normalized amplitude

pattern). The focal distance F of a given reflector can be
calculated after measuring its diameter D and its height 0H :

2

016

D
F

H
= (14.5)

(14.5) is found by solving (14.1) with / 2Dρ′ = and 0fz F H= − .

For example, if / 1/ 4F D = , then 0 0/ 4H D H F= ⇒ = , i.e. the
focal point is on the reflector’s rim plane.

The geometry of the paraboloidal reflector has two valuable
features:

• All rays leaving the focal point O are collimated along the
reflector’s axis after reflection.

• All path lengths from the focal point to the reflector and on to
the aperture plane are the same and equal to 2F .

The above properties are proven by the GO methods, therefore,
they are true only if the following conditions hold:

• The radius of the curvature of the reflector is large compared
to the wavelength and the local region around each reflection
point can be treated as planar.

• The radius of the curvature of the incoming wave from the
feed is large and can be treated locally at the reflection point
as a plane wave.

• The reflector is a perfect conductor, i.e. 1Γ = − .
The collimating property of the parabolic reflector is easily

established after finding the normal of the parabola.

ˆ p

p

C
n

C

∇
=

∇
(14.6)

Here,

( )2cos / 2 0p f fC F r θ= − = (14.7)
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is the parabolic curve equation (see equation (14.2)). After
applying the ∇ operator in spherical coordinates):

2 ˆˆ cos cos sin
2 2 2
f f f

p f fC r
θ θ θ

θ∇ = − + (14.8)

ˆˆ ˆ cos sin
2 2
f f

f fn r
θ θ

θ⇒ = − + (14.9)

The angles between n̂ and the incident and reflected rays are found
below.

ˆ ˆcos cos
2
f

i fr n
θ

α = − ⋅ = (14.10)

According to Snell’s law, i rα α= . It is easy to show that this is
fulfilled only if the ray is reflected in the z-direction:

ˆˆ ˆˆcos ( cos sin )

ˆˆ cos sin
2 2

cos cos sin sin cos
2 2 2

r f f f f

f f
f f

f f f
f f

z n r
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α θ θ θ

θ θ
θ

θ θ θ
θ θ

= ⋅ = − + ⋅

 
− + = 
 

= + ≡

(14.11)

Thus, it was proven that for any angle of incidence fθ the reflected

wave is z-directed.
The equal path length property follows from (14.2). The total

path-length L for a ray reflected at the point R is:
cos (1 cos ) 2f f f f fL OR RA r r r Fθ θ= + = + = + = (14.12)

It is obvious that L is a constant equal to 2F regardless of the angle
of incidence.

2. Aperture distribution analysis via GO (aperture integration)
There are two basic techniques to the analysis of the radiation

characteristics of reflectors. One is called the current distribution
method, which is a physical optics (PO) approximation. It assumes
that the incident field from the feed is known, and that it excites
surface currents on the reflector’s surface as ˆ2 i

sJ n H= × . This
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current density is then integrated to yield the far-zone field. It is
obvious that PO method assumes perfect conducting surface and
reflection from locally flat surface patch (it utilizes image theory).
Besides, it assumes that the incident wave coming from the
primary feed is locally plane far-zone field.

For the aperture distribution method, the field is first found
over a plane, which is normal to the reflector’s axis, and lies at its
focal point (the antenna aperture). GO (ray tracing) is used to do
that. Equivalent sources are formed over the aperture plane. It is
assumed that the equivalent sources are zero outside the reflector’s
aperture. We shall first consider this method.

The field distribution at the aperture of the reflector antenna is
necessary in order to calculate the far-field pattern, directivity, etc.
Since all rays from the feed travel the same physical distance to the
aperture, the aperture distribution will be of uniform phase.
However, there is a non-uniform amplitude distribution. This is
because the power density of the rays leaving the feed falls off as

21/ fr . After the reflection, there is no spreading loss since the rays

are collimated (parallel). Finally, the aperture amplitude
distribution varies as 1/ fr . This is explained in brief as follows.

ρ′

d ρ′

fθ
fdθ

fr

z

dA
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GO assumes that power density in free space follows straight-
line paths. Applied to the power transmitted by the feed, the power
in a conical wedge stays confined within as it progresses along the
cone’s axis. Let us consider a conical wedge of solid angle dΩ
whose cross-section is of infinitesimal angle fdθ . It confines

power, which after being reflected from the paraboloid, arrives at
the aperture plane confined within a cylindrical ring of thickness
d ρ′ and area 2dA dπρ ρ′ ′= .

Let us assume that the feed is isotropic and it has radiation
intensity / 4tU π= Π , where tΠ is the transmitted power. The

power confined in the conical wedge is
4

td Ud d
π

ΠΠ = Ω = Ω . This

power reaches the aperture plane with a density of

( )
4

t
a

d d
P

dA dA
ρ

π
Π Π Ω′ = = (14.13)

The generic relation between the solid angle increment and the
directional angles’ increments is

sind d dθ θ ϕΩ = (14.14)
(see Lecture 4). In this case, the structure is rotationally
symmetrical, so we define the solid angle of the conical wedge as:

2

0

(sin ) 2 sinf f f f fd d d d
π

θ θ ϕ π θ θΩ = =∫ (14.15)

Substituting (14.15) and 2dA dπρ ρ′ ′= in (14.13) gives:
2 sin sin

( )
4 2 4

f f f ft t
a

d d
P

d d

π θ θ θ θ
ρ

π πρ ρ π ρ ρ
Π Π′ = =

′ ′ ′ ′
(14.16)

From (14.3), it is seen that

2cos ( / 2)
f

f f

d F
r

d

ρ
θ θ

′
= = (14.17)

1f

f

d

d r

θ
ρ

⇒ =
′

(14.18)
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′

Π Π′⇒ = = (14.19)

Equation (14.19) shows the spherical nature of the feed radiation,
and it is referred to as spherical spreading loss. Since a aE P∝ ,

1
a

f

E
r

∝ (14.20)

Thus, there is a natural amplitude taper due to the curvature of the
reflector. If the primary feed is not isotropic, the effect of its
normalized field pattern ( , )f f fF θ ϕ is easily incorporated in

(14.20) as
( , )f f f

a
f

F
E

r

θ ϕ
∝ (14.21)

Thus, one can conclude that the field phasor at the aperture is:

2 ( , )
( , ) f f fj F

a f f m
f

F
E E e

r
β θ ϕ

θ ϕ −= ⋅ (14.22)

The coordinates ( , )ρ ϕ′ ′ are more appropriate for the description of
the aperture field distribution. Obviously, fϕ ϕ′ ≡ . As for fr and

fθ , they are transformed as:
2 24

4f
F

r
F

ρ′+= (14.23)

2arctan
2f F

ρθ
′

= (14.24)

The last thing to be determined is the polarization of the
aperture field provided the polarization of the primary-feed field is
known (denoted with ˆiu ). The law of reflection at a perfectly
conducting wall states that n̂ bisects the incident and the reflected
rays, and that the total electric field has zero tangential component
at the surface:

0i rE Eτ τ+ = (14.25)
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and
ˆ2( )

ˆ2( )

r i i

r i i

E E n E

E n E E

+ = ⋅

⇒ = ⋅ −
(14.26)

iE rE
n̂

Since we have full reflection (perfect conductor), | | | |i rE E= .
Then,

ˆ ˆ ˆ ˆ ˆ2( )r i iu n u n u= ⋅ − (14.27)
Here, ˆiu is the unit vector of the incident ray, and ˆru is the unit
vector of the reflected ray. The aperture field distribution is fully
defined by (14.22) and (14.27). The radiation integral over the
electric field can be now formed. For example, a circular
paraboloid would have a circular aperture, and the radiation
integral becomes:

2 / 2
sin cos( )

0 0

( , )
ˆ

D
fE j

m r
f

F
E u e d d

r

π
βρ θ ϕ ϕρ ϕ

ρ ρ ϕ′ ′−′ ′
′ ′ ′= ∫ ∫J (14.28)

In the above considerations, it was said that the aperture field
has uniform phase distribution. This is true only if the feed is
located at the focal point. However, more sophisticated designs
often use an offset feed. In such cases, the PO method (i.e. the
current distribution method) is preferred.
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3. The current distribution (PO) method (surface integration)
The basic description of this approach and its assumptions were

already given in the previous section. Once the induced surface
currents sJ are found, the magnetic vector potential A and the far-
zone field can be calculated. In practice, the electric far field is
calculated directly from sJ by

( )
/ ˆ

ˆˆ ˆ
4

r

s r

j r
far j r r

s s
S

J

e
E j J J r r e ds

r

β
βωµ

π
⊥

−
′⋅  ′= − − ⋅ ∫∫ (14.29)

Equation (14.29) follows directly from the relation between the
far-zone electric field and the magnetic vector potential A:

ˆ/ r

farE j Aω ⊥= − , (14.30)

which can written more formally as:
ˆˆ ˆ ˆ( ) ( )farE j A j A r r j A Aθ ϕω ω ω θ ϕ= − − − ⋅ = − + (14.31)

This approach is also known as Rusch’s method after the name of
the person who first introduced it. The integral in (14.29) has
analytical solution for symmetrical reflectors, but it is usually
evaluated numerically in practical computer codes, in order to
render the approach versatile wrt any apertures.

In conclusion to this general discussions, it should be noted that
both methods produce very accurate results for the main beam and
first side lobe. The pattern far out the main beam can be accurately
predicted by including diffraction effects (scattering) from the
reflector’s rim. This is done by augmenting GO with the use of
geometrical theory of diffraction (GTD) (J.B. Keller, 1962), or by
augmenting the PO method with the physical theory of diffraction
(PTD) (P.I. Ufimtsev, 1957).
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4. The focus-fed axisymmetric parabolic reflector antenna
This is a popular reflector antenna, whose analysis will be used

to illustrate the general approach to the analysis of any reflector
antenna. Consider a linearly polarized feed, with the E field along
the x-axis. As before, the reflector’s axis is along z. Let us also
assume that the pattern of the feed is represented by

ˆ ˆ( , ) ( )cos ( )sin
fj r

f f f m f E f f f H f f
f

e
E E C C

r

β

θ ϕ θ θ ϕ ϕ θ ϕ
−

 = −  (14.32)

Here, ( )E fC θ and ( )H fC θ denote its principal-plane patterns. The

expression in (14.32) is a common way to approximate a 3-D
pattern of an x-polarized antenna by knowing only the two
principal-plane 2-D patterns. This approximation is actually very
accurate for aperture-type antennas because it directly follows
from the expression of the far-zone fields in terms of the radiation
integrals (see Lecture 10, Section 3):

( )
[ cos sin

4

cos cos sin ]

j r
E E
x y

H H
y x

e
E j

r

β

θ β ϕ ϕ
π

η θ ϕ ϕ

−

= + +

−

I I

I I
(14.33)

( )
[ ( cos sin )

4

cos cos sin

j r
H H
x y

E E
y x

e
E j

r

β

ϕ β η ϕ ϕ
π

θ ϕ ϕ

−

= + +

−

- I I

I I
(14.34)

The aperture field will be now derived in terms of x- and y-
components. To do this, the GO method of Section 2 will be used.
An incident field of ˆˆi fu θ= polarization will produce an aperture

reflected field of the following polarization (see (14.27)):

ˆ ˆ ˆˆ ˆ ˆ ˆ2( ) 2sin
2

ˆ ˆˆ2sin cos sin
2 2 2

f
r f f f

f f f
f f f

u n n n

r

θ θ
θ θ θ

θ θ θ
θ θ

= ⋅ − = − =

 
= + − 

 
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2ˆˆ ˆ 2sin cos 1 2sin
2 2 2
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f f f
r f f

f f f f
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θ θ θ θ
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θ θ θ

   
⇒ = − − − =   

   

= − −

(14.35)

Similarly, an incident field of ˆ ˆi fu ϕ= polarization will produce an

aperture reflected field of the following polarization
ˆ ˆr fuϕ ϕ= − (14.36)

Transforming (14.35) and (14.36) to rectangular (x and y)
coordinates at the aperture plane gives:

ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

r f f

r f f

u x y

u x y

θ

ϕ

ϕ ϕ

ϕ ϕ

= − −

= + −
(14.37)

Superimposing the contributions of the ˆ
fθ and ˆ fϕ components of

the field in (14.32) to the aperture field x and y components
produces:

2

2 2

( , )

ˆ{ ( )cos ( )sin

ˆ ( ) ( ) sin cos }

j F

a f f m
f

E f f H f f

E f H f f f

e
E E

r

x C C

y C C

β
θ ϕ

θ ϕ θ ϕ

θ θ ϕ ϕ

−
= ×

 − + 
 − − 

(14.38)

In (14.38), the magnitude and phase of the vector are expressed as
in (14.22). Note that a y-component appeared in the aperture field,
despite the fact that the feed generates only xE field. This is called
cross-polarization. If the feed has rotationally symmetric pattern,
i.e. ( ) ( )E f H fC Cθ θ= , there is no cross-polarization. From

equation (14.38), it is also obvious that cross-polarization is zero at
0fϕ = (E-plane) and at 90fϕ = (H-plane). Cross-polarization is

maximum at 45 ,135fϕ = . Cross-polarization in the aperture

means cross-polarization of the far field, too. Cross-polarization is
unwanted because it could lead to polarization losses depending on
the transmitting and receiving antennas.
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It is instructive to examine (14.38) for a specific simple
example: reflector antenna fed by a very short x-polarized electric
dipole. Its principal-plane patterns are ( ) cosE f fC θ θ= and

( ) 1H fC θ = . Therefore, it will generate the following aperture

field:
2

2 2ˆ{ cos cos sin

ˆ cos 1 sin cos }

j F

a m f f f
f

f f f

e
E E x

r

y

β
θ ϕ ϕ

θ ϕ ϕ

−
 = × − + 

 − − 

(14.39)

An approximate plot of the aperture field of (14.39) is shown
below.

x

y

E-plane

H-plane

It must be also noted that cross-polarization decreases as the ratio
/F D increases. This follows from (14.4), which gives the largest

feed angle
maxf oθ θ= . As /F D increases, oθ decreases, which
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makes the cross-polarization term in (14.39) smaller.
Unfortunately, large /F D ratios are not very practical.

An example is presented in W.L. Stutzman, G. Thiele, Antenna
Theory and Design, of an axisymmetric parabolic reflector with
diameter 100D λ= and / 0.5F D = , fed by a half-wavelength
dipole located at the focus.
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Cross-polarization:

The results above are obtained using commercial software
(GRASP) using PO methods (surface current integration).

45 ,135ϕ =
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Cross-polarization of reflectors is measured as the ratio of the
peak cross-polarization far-field component to the peak co-
polarization far field. For example, the above graph shows a cross-
polarization level of XPOL=-26.3 dB.

5. Offset parabolic reflectors
One unpleasant feature of the focus-fed reflector antennas is

that part of the aperture is blocked by the feed itself. To avoid this,
offset-feed reflectors are developed, where the feed antenna is
away from the reflector’s aperture. They are developed as a
portion of the so-called parent reflector. The price to pay is the
increase of XPOL. That is why such reflectors are usually fed with
primary feeds of rotationally symmetrical patterns, i.e. E HC C≈ ,
which effectively eliminates cross-polarization.

The analysis techniques given in the previous sections are
general and can be applied to these reflectors, too. Generally, the
PO method (surface currents integration) is believed to yield better
accuracy. Both, the PO and the GO methods, are accurate only at
the main beam and the first couple of side-lobes.
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Offset reflectors are popular for antenna systems producing
contour beams. Then, multiple primary feeds (usually horns) are
illuminating the reflector at different angles, and constitute a
significant obstacle at the antenna aperture.

6. Dual-reflector antennas
The dual-reflector antenna consists of two reflectors and a feed

antenna. The feed is conveniently located at the apex of the main
reflector. This makes the system mechanically robust, the
transmission lines are shorter and easier to construct (especially in
the case of waveguides).

The virtual focal point F is the point from which transmitted rays
appear to emanate with a spherical wave front after reflection from
the subreflector.

The most popular dual reflector is the axisymmetric Cassegrain
antenna. The main reflector is parabolic and the subreflector is
hyperbolic (convex). A second form of the dual reflector is the
Gregorian reflector. It has a concave elliptic subreflector. The
Gregorian subreflector is more distant from the main reflector and,
thus, it requires more support. Dual-reflector antennas for earth
terminals have another important advantage, beside the location of
the main feed. They have almost no spillover toward the noisy
ground, as do the single-feed reflector antennas. Their spillover (if
any) is directed toward the much less noisy sky region. Both, the
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Cassegrain and the Gregorian reflector systems, have their origins
in optical telescopes and are named after their inventors.

The subreflectors are rotationally symmetric surfaces obtained
from the curves shown below (a hyperbola and an ellipse).

The subreflector is defined by its diameter sD and its eccentricity
e . The shape (or curvature) is controlled by the eccentricity:

1, hyperbola

< 1, ellipse

c
e

a

>
= 


(14.40)

Special cases are
• e = ∞ , straight line (plane)
• 0e = , circle (sphere)
• 1e = , parabola

Both, the ellipse and the hyperbola, are described by the equation:
2 2

2 2 2 1s sz x

a c a
− =

−
, (14.41)

The function of a hyperbolic subreflector is to convert the
incoming wave from a feed antenna located at the focal point F′ to
a spherical wave front w that appears to originate from the virtual
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focal point F. This means that the optical path from F′ to w must
be constant with respect to the angle of incidence.

F R RA F V VB c a VB′ ′+ = + = + + (14.42)
Since

RA FA FR FB FR= − = − (14.43)
( FA FB= because the reflected wave must be spherical)

( ) ( ) 2F R FR c a FB VB c a c a a′⇒ − = + − − = + − − = (14.44)

Note: Another definition of a hyperbola is: a hyperbola is the
locus of a point that moves so that the difference of the distances
from its two focal points, F R FR′ − , is equal to a constant, 2a .

Dual axisymmetric Cassegrain reflectors can be modeled as a
single equivalent parabolic reflector as shown below.

The equivalent parabola has the same diameter eD D= but its
focal length is longer than that of the main reflector

1

1e
e

F F MF
e

+= =
−

(14.45)

Here, ( 1) /( 1)M e e= + − is called magnification.
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The increased equivalent focal length has several advantages:
• less cross-polarization
• less spherical-spread loss at the reflector’s rim, and therefore,

improved aperture efficiency.
The synthesis of dual-reflector systems is rather advanced

topic. Many factors are taken into account when shaped reflectors
are designed for improved aperture efficiency. These are
minimized spillover, less phase error, improved amplitude
distribution in the reflector’s aperture.

7. Gain of reflector antennas
The maximum achievable gain for an aperture antenna is

max 2

4
u pG D A

π
λ

= = (14.46)

This gain is possible only if the following is true: uniform
amplitude and phase distribution, no spillover, no ohmic losses. In
practice, these conditions are not achievable, and the effective
antenna aperture is less than its physical aperture:

2

4
ap u ap pG D A

πε ε
λ

= = , (14.47)

where 1apε ≤ is the aperture efficiency. The aperture efficiency is

expressed as a product of sub-efficiencies:

ap r t s aeε ε ε ε= (14.48)

where:

re is the radiation efficiency,

tε is the aperture taper efficiency,

sε is the spillover efficiency, and

aε is the achievement efficiency.
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The taper efficiency can be found using the directivity
expression for aperture antennas (see Lecture 12, Section 4):

2

0 2 2

4

| |
A

A

a

S

a

S

E ds

D
E ds

π
λ

′

=
′

∫∫

∫∫
(14.49)

2

2| |
A

A

a

S
eff

a
S

E ds

A
E ds

′

⇒ =
′

∫∫

∫∫
(14.50)

2

2

1

| |
A

A

a

Seff
t

p p a
S

E ds
A

A A E ds
ε

′

⇒ = =
′

∫∫

∫∫
(14.51)

Expression (14.51) can be written directly in terms of the known
feed antenna pattern. If the aperture is circular, then
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0 0
2 2

2

0 0

( , )
1

| ( , ) |

a

a

t a

a

E d d

a
E d d

π

π

ρ ϕ ρ ρ ϕ
ε

π
ρ ϕ ρ ρ ϕ

′ ′ ′ ′ ′

=
′ ′ ′ ′ ′

∫ ∫

∫ ∫
(14.52)

Substituting sin 2 tan( / 2)f f fr Fρ θ θ′ = = and / f fd d rρ θ′ = in

(14.52) yields:
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2
2

2
0 0

2 2
2

0 0

( , ) tan
24

| ( , ) | sin

o

o

f
f f f

t

f f f f

F d d
F

a
F d d

θπ

θπ

θ
θ ϕ θ ϕ

ε
π

θ ϕ θ θ ϕ

′ ′

=
′ ′

∫ ∫

∫ ∫
(14.53)

All that is needed to calculate the taper efficiency is the feed
pattern ( , )f fF θ ϕ′ .

If the feed pattern extends beyond the reflector’s rim, certain
amount of power will not be redirected by the reflector, i.e. it will
be lost. This power-loss is referred to as spillover. The spillover
efficiency measures that portion of the feed pattern, which is
intercepted by the reflector relative to the total feed power:
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The reflector design problem includes a trade-off between
aperture taper and spillover through feed antenna choice. Taper
and spillover efficiencies are combined to form the so-called
illumination efficiency i t sε ε ε= . Multiplying (14.53) and (14.54),
and using 2 tan( / 2)oa F θ= yields:
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Here,
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is the directivity of the feed antenna. An ideal feed antenna pattern
would compensate for the spherical spreading loss by increasing
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the field strength as fθ increases, and then would abruptly fall to

zero in the direction of the reflector’s rim in order to avoid
spillover:
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This ideal feed is not realizable. For practical purposes, (14.55)
has to be optimized with respect to the edge-illumination level.
The function specified by (14.55) is well-behaved with a single
maximum with respect to the edge-illumination.

The achievement aperture efficiency aε is an integral factor
including losses due to: random surface error, cross-polarization
loss, aperture blockage, reflector phase error (profile accuracy),
feed phase error.

A well-designed and well-made aperture antenna should have
an overall aperture efficiency of 0.65apε ≈ or more, where “more”

is less likely.
The gain of a reflector antenna will certainly depend on phase

errors, which theoretically should not exist but are often present in
practice. Any departure of the phase over the virtual aperture from
the uniform distribution leads to a significant decrease of the
directivity. For paraboloidal antennas, phase errors result from:

• displacement of the feed phase centre from the focal
point;

• deviation of the reflector surface from the paraboloidal
shape, including surface roughness and other random
deviations;

• feed wave fronts are not exactly spherical.
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Simple expression has been derived1 to predict with reasonable
accuracy the loss in directivity for rectangular and circular
apertures when the peak value of the aperture phase deviations is
known. Assuming that the maximum radiation is along the
reflector’s axis, and assuming a maximum phase deviation m, the
ratio of the directivity without phase errors 0D and the directivity
with phase errors D is given by:
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(14.58)

The maximum phase deviation m is defined as:
| | | | mφ φ φ= − ≤ (14.59)

where φ is the aperture’s phase function, and φ is its average
value.

1 D.K. Cheng, “Effects of arbitrary phase errors on the gain and beamwidth characteristics of radiation
pattern,” IRE Trans. AP, vol. AP-3, No. 3, pp. 145-147, July 1955.


