LECTURE 16: LINEAR ARRAY THEORY - PART ||
(Linear arrays. Hansen-Woodyard end-fire array, directivity of a
linear array, linear array pattern characteristics — recapitulation;
3-D characteristics of an N-element linear array.)

1. Hansen-Woodyard end-fire array (HWEFA)
One of the shortcomings of end-fire arrays (EFA) istheir
relatively broad HPBW as compared to broadside arrays.
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To enhance the directivity of an end-fire array, Hansen and
Woodyard proposed that the phase shift of an ordinary EFA
B =xkd
be increased as:

ﬁ:—(kd +%) for maximum at 8 = 0° (16.1)

— +| kd +& for maximum at 8 =180° (16.2)
N

Conditions (16.1)—(16.2) are known as the Hansen — Woodyard
conditions for end-fire radiation. They follow from a procedure for
maximizing the directivity.

The normalized pattern AF,, of auniform linear array is:

sin{N(kd cos¢9+,6)}
AF, ~ NZ (16.3)
2(kd cosé + f3)

if the argument w:%(kd cosé + ) issufficiently small (see

previous lecture). We are looking for optimal /4, which would
result in maximum directivity. Let:

B =-pd (16.4)
where d isthe array spacing and p is the optimization parameter

sin{l\gj(kcose— p)}

= AF, =
|\Izcl(kcose— p)
Assumethat Nd/2=(q; then
sin| q(kd cosé@ -
= AF, = [q( p)]
d(kd cosé - p)

(16.5)



or AFn=¥; where Z =q(kdcosé - p)

The radiation intensity:

U (6) =|AF,[* 9 2 (16.6)

. 2
U@=0)= snja(k—p)] (16.7)

a(k-p)
. 2

U,(0) = J©) ={.Z Snz} (16.8)

Uu@=0) (sinz Z

where:
z=q(k-p)

Z =q(kcosé - p), and
U, (8) - normalized power pattern with respect to € =0°.

Directivity at € =0°:

D, = 47U (6 =0) (16.9)
Prad
whereP, 4 = <ﬂ>U (6)d€2. To maximize the directivity, the
quantity U, = P4 /47 will be minimized.
2rrw
j | ( 2 S'”Zj n6dede (16.10)
sinz

1 z \ %|sin[qg(kcos6 - p)] -
uo_—(@J H a(keosd ) }smede (16.11)

1 V4 2 T Cco0s2z-1 1
Uj=—| — | | —+——+Si(22) |=——0q(2) (16.12
0 2kq(s:nzM2 27 ( )} 2kqg()( )



fsint

Here, Si( j—dt The minimum of g(z) occurswhen
z=q(k—-p)=-147 (16.13)
=2 (k- p)=-147
= N;Ik _ Nap =-1.47, where dp=-4
= E(dk+ B)=-1.47
2.94 2.94
ﬁ_—T—kd _—(kd N j (16.14)

Equation (16.14) gives Hansen-Woodyard condition for improved
directivity along 8 =0°. Similarly, for 6 =180°:

B = +(% + kdj (16.15)
Usually, conditions (16.14) and (16.15) are approximated by:
8= i(kd + %j (16.16)

which is easier to remember and gives almost identical results
sincethe curve g(z) at itsminimumisvery flat.

Conditions (16.14)-(16.15), or (16.16), ensure minimum
beamwidth (maximum directivity) in the desired end-fire direction
but there is atrade-off in the side-lobe level, which is higher than
that of the ordinary EFA. Besides, conditions (16.14)-(16.15) have
to be complemented by additional requirements, which would
ensure low level of the radiation in the direction opposite to the
main lobe.



a) Foramaximumat € =0°:

2.94
Yoo =7
B= —(kd +&j = N (16.17)
N Jp—or _ g2
Wy1go = —2kd N

In order to have a minimum of the pattern in the 8 =180°
direction, one must ensure that:

W lp-1g0o= 7, (16.18)
It is easier to remember Hansen-Woodyard conditions for
maximum directivity in the 8 = 0° direction as:

294
Who=" =7 (16.19)
|V lo—1800= 7,
b) For amaximum at 8 =180°:
y 2%
6=180" ~
B=kd+22 o N oy (1620
IOy =2+

In order to have a minimum of the patterninthe 8 =0°
direction, one must ensure that
W |p—oo= 72, (16.21)
One can now summarize Hansen-Woodyard conditions for
maximum directivity in the 8 =180° direction as.
| = 294 r
Voo =" (16.22)

Wyl =7

If (16.18) and (16.21) are not observed, the radiation in the
opposite of the desired direction might even exceed the main beam
level. It is easy to show that the complimentary requirement of



| |= 7 at the opposite direction can be met, if the following

relation is observed:
d= (N—_lji (16.23)
N /4
If Nislarge, d = A/4. Thus, for alarge uniform array, Hansen-
Woodyard condition can yield improved directivity, only if the
spacing between the array elementsis approximately A/4.

Solidline: d=A4/4
Dotted line: d=A4/2
N=10

,B:—(kd +%j




2. Directivity of alinear array
2.1. Directivity of aBSA

N -2
, sin(zkdcosej snz T2
U(6)=|AF,| = N ~ [—} (16.24)
—kd cosé@ Z
L 2 -
D, = 4r o - Yo (16.25)
rad U av
where:
P

The radiation intensity in the direction of maximum radiation
6 =rl2intermsof AF, isunity:
Up=Ux=U(0=7/2)=1
Dy = (16.26)
av

Theradiation intensity averaged over all directionsis calculated as:
2

N

sin (';I kd cos@j

T = 2 VA
U, = jjs‘”zzgneded¢:1j X snode
oo £ 2% 2deOSH
Change variable:
Z= %kd cosd = dZ = —%kd cos@dé (16.27)

N

Tr = 2 2 . 2
u, -—+ | [ﬂ} dcosodd = ——— 2 | (Ej dz (16.28)
2}z 2Nkd 3\ Z
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Nkd

> . 2
U, = | (ﬂj dz (16.29)
Nkd d\ Z

2
: snz) . : : :
The function, — , Isarelatively fast decaying function as Z

increases. That iswhy, for large arrays, where Nkd /2 ishig
enough (= 20), the integral (16.29) can be approximated by:

U =2 ]o Sinzfdz—i (16.30)
¥ Nkd Yz Nkd '
D, = 1 _Nkd :2N(Qj (16.31)
U, 7« A
Substituting the length of thearray L =(N —1)d in (16.31) yields:
L) d
Dy=2|1+— | — 16.32
’ ( dj@ (1632
N
For alargearray (L>d):
D, =2L/A (16.33)

2.1 Directivity of ordinary EFA

Consider an EFA with maximum radiationat 8 =0, i.e.
B =-kd.

2

(N \
sm{kd(cos@—l)} N2
u(e):\AFn|2=< N2 >:(ﬂj (16.34)

[2 kd (cosé —1)} z

where: Z = %kd (cosf-1).
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T/ 2
— rad _ J‘J‘(San 0d9d¢zlj(ﬂj snédé
Ar 2\ Z
Again, change of variablesis used:

Z= %kd cosd = dZ = —% kd cosgdé (16.35)
y4 . 2 —Nkd . 2
U, = J(ﬂj dooso=-2- 2 | (ﬂj oz
2.\ Z 2Nkd § (| Z
1 Mrgnz)?
U,=— [ | == dz 16.36
"= NG I ( Z j (16.36)

If (Nkd) issufficiently large, the above integral can be
approximated as;

o . 2
i I(snzj dz-—7~ (16.37)
Nkd 3 Z Nkd 2
= Dy = = 2N N (9] (16.38)
av T A

It is seen that the directivity of an EFA is approximately twice as
large as the directivity of the BSA (compare (16.38) and (16.31)).
Another (equivalent) expression can be derived for D, in terms of

thearray length L=(N-1)d:

o1+ 9] 1539

For large arrays, the following approximation holds:
D,=4L/A if L>d (16.40)



2.2 Directivity of HW EFA
If the radiation has its maximum at @ = 0°, then the minimum
of U,, was obtained as (16.12):

2
gmn = L 2| Zwin | |7, CO2Zmin) =1 o057 ) le16.41)
2k Nd| snZ;, | | 2 27,

min
where:

7z —_147=-="
2

min —

2
g min _ i(ﬁj £+E—1.8515} _0878 1542
Nkd\(2) |2 =« Nkd
Dy == =N 7g9| an (Qj (16.43)
uy" 0.878 A
From (16.43), one can see that using HW conditions leads to
improvement of the directivity of the EFA with afactor of 1.789.

Equation (16.43) can be expressed viathe length L of the array as:

el o) ]| oo

Example: Given alinear uniform array of N isotropic elements
(N=10), find the directivity D, if:

a) =0 (BSA)

b) B =-kd (Ordinary EFA)

c) f=-kd —% (Hansen-Woodyard EFA)
Inall cases, d=A1/4.

a) BSA

Do = ZN(%j:S (6.999 dB)
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b) Ordinary EFA
D, = 4N (%j =10 (10 dB)

c) HW EFA
Dy = 1.789[4N (%H =17.89 (1253 dB)

3. Pattern characteristics of linear uniform arrays - recapitulation
A. Broad-side array

NULLS (AF, =0):

0, =arccos(i%§), where n=12,3,4,... and n# N,2N,3N,...

MAXIMA (AF, =1):
mA
6, = arccos(iTj, where m=0,1,2,3,...

HALF-POWER POINTS:

6, = arccos(i
zNd

j,where”—d«l
A

HALF-POWER BEAMWIDTH:

aG, = 2[% - arccos( —x1

A

1.3911)} 7d

7 Nd

MINOR LOBE MAXIMA:
6, = arccos J_ri 2stl , Where s=1,2,3,... and ”—d<<1
2d\ N A
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FIRST-NULL BEAMWIDTH (FNBW):

a6,=2 r_ arccos(ij
2 Nd

FIRST SIDE LOBE BEAMWIDH (FSLBW):

a0, =2 ? _arccos 3 , 7d <1
2 2Nd A

B. Ordinary end-fire array

NULLS (AF, =0):

6, :arccos(l—%gj, where n=1,2,3,... and n= N,2N,3N,...

MAXIMA (AF, =1):
mA
6, = arccos(l— Tj where m=0,1,2,3,...

HALF-POWER POINTS:

6, = arccos(l— 1391
zNd

j,where”—d«l
A

HALF-POWER BEAMWIDTH:

a6, = 2arccos(1— <1

1.3912] d
zNd ) A

MINOR LOBE MAXIMA:

6, = arccos[l— , Where s=1,2,3,... and %d <1
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FIRST-NULL BEAMWIDTH:
a6, = chcos(l—ij
Nd

FIRST SIDE LOBE BEAMWIDH:
2@, = 2arccos| 1- 34 , 7d <1
2Nd

A

C. Hansen-Woodyard end-fire array

NULLS:
6, :arccos[1+ (1- 2n)ﬁ} where n=1,2,... and n= N, 2N,...

MINOR LOBE MAXIMA:
6, = arccos(l—i), where s=1,2,3,... and ”—d<<1
Nd A

SECONDARY MAXIMA:
6., = arccos 1+[1—(2m+1)]i , where m=1,2,... and ﬂ<<1
2Nd A

HALF-POWER POINTS:
6, = arccos(l— 0.1398%] , Where %d <1, N-large

HALF-POWER BEAMWIDTH:
26, = 2arccos(1— 0.1398%) , where % <1, N-Large
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FIRST-NULL BEAMWIDTH:

a6, = 2arccos 1—L
2Nd

4. 3-D characteristics of alinear array

In the previous considerations, it was always assumed that the
linear-array elements are located along the z-axis, thus, creating a
problem, symmetrical around the z-axis. If the array axis has an
arbitrary orientation, the array factor can be expressed as:

N j(n-1)(kd N j(n-1
AF =Y g el (ks eh) _ 30 g glln-v, (16.45)
=1 =1

where a, isthe excitation amplitude and w =kd cosy + 3.
The angle y is subtended between the array axis and the

radius-vector to the observation point. Thus, if the array axisis
along the unit vector a:

a=sing, cosg,X+snd,sing,y+ cosd, 2 (16.46)
and the radius — vector to the observation point is:
I =SiN@CcosgX+SiN@singy + cosfz (16.47)
the angle ¥ can be found from:

cosy=a-r
=SNG cos@Psing, cosg,X+sin@dsingsing, sing, y + cosé cosb, 2
= COSy =sin@siné, cos(¢ — ¢, ) + cose cosb, (16.48)
If =2 (6, =0°), then cosy=cosl, y=86.
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