LECTURE 17: LINEAR ARRAYS—PART IlI

(N-element linear array with uniform spacing and non-uniform
amplitude: binomial array; Dolph—Tschebyscheff array; directivity
and design considerations.)

1. Advantages of linear array with non uniform amplitude

The most often met BSAS, classifed according to the type of

their excitation amplitude, are:

a) theuniform BSA —relatively high directivity, but the side-
lobe levels are high;

b) Dolph-Tschebyscheff (Chebyshev, Yeorsmmies) BSA —for a
given number of elements directivity next after that of the
uniform BSA, but side-lobe levels are the lowest in
comparison with the other two types of arrays for agiven
directivity.

c) Binomial BSA — does not have good directivity but has
very low side-lobe levels (when d = A/ 2, there are no side
lobes at all).

2. Array factor (AF) of alinear array with non-uniform
amplitude distribution

LVen T dd
number|
P
GMT/V
| 6 1 as
%2 d
d 4» a;
i8] |
Vo, i 0
197 d
¥ 9
[ = y “ay y
axzifL L/ ‘ i
¥
% d | =
| [ | | -
1 / t o
L a4 d i ;
| | "3
| e
T‘ 3

fig. 6.17 pp.291, Balanis



Examples of AFs of arrays of non-uniform amplitude distribution:

a) uniform amplitude distribution (N=5, d =1/2, 6, =90")

D=5
BW = 20.8°
SLL=—12dB

180°

b) triangular (1:2:3:2:1) amplitude distribution (N=5, d = 1/2,
HO - 900)

D =426
BW = 26.0°
SLL=-—19.1dB

180°




c) binomia (1:4:6:4:1) amplitude distribution (N=5, d =1/ 2,
6, =90")

180°

d) Dolph-Tschebyschev (1:1.61:1.94:1.61:1) amplitude
distribution (N=5, d =1/2, 6, =90")

D =468
BW = 23.6°
SLL =—20dB

180°




e) Dolph-Tschebyschev (1:2.41:3.14:2.41:1) amplitude
distribution (N=5, d=41/2, §,=90)

D =422
BW =26.4°
SLL = —30dB

Notice that as the current amplitude is tapered more towards
the edges of the array, the side-lobes tend to decrease, and the
beamwidth tends to increase.

Let usconsider alinear array with an even number (2M) of
elements, located symmetrically along the z-axis, with excitation,
which is aso symmetrical with respect to z= 0. For abroadside

array, (8=0):

o jékd cosé j§kd cosd j 2M =1, i cose
AF=ae? +a,e ? +..+aye
L (17.1)
—j=kd cos@ —j 3rdcoso —j 2M =1, cose
+ae ? +ae ? +..+aye
M 2n-1
= AF®=2> a, cos (—2 jkd cosé (17.2)
n=1



If the linear array consists of an odd number (2M+1) of
elements, located symmetrically along the z-axis, then the array
factor is.

0o _ jkd cos6@ j 2kd cosé@ jMkd cosé
AF" =2a, + a,e + ae + ...+ 3y 4€ +

+a e—jkdcose +a e—j2kdcos¢9 +.otay, e—jl\/lkdcose (17.3)
2 3 +1
M+1
= AF°=2%" a,cos| (n—1)kdcosf | (17.4)
n=1

The factors (2) in equations (17.2) and (17.4) are unimportant for
the normalized AF. Equations (17.2) and (17.4) can be re-written
as.

M
AF®=3"a,cos| (2n-1)u], where N =2M (17.5)
n=1

M +1

AF°=>"a,cos 2(n-1)u], where N=2M +1  (17.6)
n=1

Here, u= %cose.



3. Binomial array

The binomial BSA wasinvestigated and proposed by J.S.
Stones to synthesi ze patterns without side lobes. First, consider a
2—element array (along the z-axis).

X

The elements of the array are identical and their excitation is the
same. Its array factor is of the form:

AF =1+Z , where Z = eV = gl(s%+/) (17.7)
If the spacingisd < A/2 and S =0 (broad-side maximum), this
array will have no side lobes at all.
Second, consider a 2—element array whose elements are

identical and the same asthe array given above. The distance
between the two arraysisagain d.

<y




This new array has an AF of the form:
AF =(1+Z2)(1+Z2) =1+2Z + Z* (17.8)

Since (1+ Z) hasno sidelobes, (1+ Z)* will not have side lobes
either.
Continuing the process for an N-element array produces:
AF = (1+2Z)N? (17.9)
If d <A/2,the above AF will not have side-lobes regardless of the
number of elements N. The excitation amplitude distribution can

be obtained easily by the expansion of the binomein (17.9).
Making use of Pascal’ striangle:

1
11
121
1331
14641
15101051

the relative excitation amplitudes at each element of an (N+1)-
element array can be determined. Such an array with a binomial
distribution of the excitation amplitudesis called abinomial array.
The current (excitation) distribution as given by the binomial
expansion gives the relative values of the amplitudes. Itis
immediately seen that there is too wide variation of the amplitude,
which isthe major disadvantage of the BAs. The overall efficiency
of such antennawould be very low. Besides, the BA has relatively
wide beam. Its HPBW isthe largest as compared to this of the
uniform BSA or the Dolph—Chebyshev array.



Approximate closed-form expression for the HPBW of a BA with
d=A4/2is
1.06 1.06 1.75

IN-1 J2L/2 ) N
where L =(N —1)d isthearray’slength. The AFsof 10-element
broadside binomial arrays (N=10) are given below.

HPBW = (17.10)

90°

180°
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The directivity of abroadside BA with spacing d =4/2 can be
calculated from the formula bel ow:

2
Dy =- T (17.12)
j {cos(jz coseﬂ déo
0 Z [d=4/2
2N —2)(2N -4)..2
D, = ( ) ) (17.12)
(2N-3)(2N-5)..1
D, =1.77</N =1.771+ 2L/ A (17.13)

4. Dolph—Chebyshev (DCA)
Chebyshev=Tschebyscheff

Dolph proposed (in 1946) a method to design arrays with any
desired side-lobe levels and any HPBWSs. This method is based on
the approximation of the pattern of the array by a Chebyshev
polynomial of order m, high enough to meet the requirement for
the side-lobe levels. Actually, a DCA with no side |obes (side-lobe
level of -0 dB) reducesto the binomial design.

4.1 The Chebyshev polynomials
The Chebyshev polynomials are defined by:

(=)™ cosh(mcosh™ | z|), z<-1
Tn(2) =4 cos(mcos ™ z), 1< z<1 (17.14)

Lcosh(mcosh‘1 2), z>1




A nice feature of Chebyschev polynomiasisthat T,,(2) of any
order m can be derived viaarecursion formula, provided T,1(2)
and T, »(2) are defined.

T.(2)=2ZT__,(2) T, ,(2) (17.15)
Explicitly, (17.15) produces.

m=0, T,(2)=1

m=1 T (2)=z

m=2, T,(2)=272°-1

m=3, T,(2)=42"-3z

m=4, T,(2)=82"-82"+1

m=5, T;(2) =162 -202° +5z, etc.

(17.16)

If | z|< 1, then Chebyshev polynomials are related to the cosine
functions, see (17.14). One can always expand the function

cos(mx) as a polynomial of cos(x) of order m, e.q.,
cos2x = 2c0s* X—1 (17.17)
Thisis done by making use of Euler’'s formula
(™)™ = (cosx+ jsinx)™ = e™ = cos(mx) + jsin(mx) (17.18)
Similar relations hold for the hyperbolic cosine function. From

the example (17.17), one can see that the Chebyshev argument zis
related to the cosine argument x by:

Z=COSX Or X=arccosz (17.19)

10



Then (17.17) can be written as:

cos(2arccosz) = 2[cos(2arccosz)]2 -1

= cos(2arccosz) = 22° —1=T,(2) (17.20)

Compare it with definition (17.14) or with (17.16)-line 3.
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Fig. 6.19, pp.296, Balanis
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Properties of Chebyshev polynomials:

1) All polynomials of any order m pass through the point (1,1).

2) Within therange —1< z<1, the polynomials have values
within [-1,1].

3) All nulls occur within —1< z<1.

4) The maxima and minimain the ze [-1,1] range have values
+1 and —1, respectively.

5) The higher the order of the polynomial, the steeper the slope
for |z|>1

4.2 Chebyshev array design
The main goal isto approximate the desired AF with a
Chebyshev polynomial such that
» theside-lobe level meets the requirements, and
« the main beam width is small enough.
An array of N elements has an AF, which can be approximated
with a Chebyshev polynomial of order mthat is always:

m=N-1, (17.21)
wheree N =2M, if Niseven;
N=2M +1, if Nisodd.

In general, for agiven side-lobe level, the higher the order of
the polynomial, the narrower the beamwidth. But for m>10, the
differenceis not substantial (seethe slopesof T,,(z) inthe

previous figure).

12



The AF of an N-element array (17.5) or (17.6) will be identical
with a Chebyshev polynomial if:

(M
> a,cos[(2n-1)u], N =2M -even
Tya(2) =5 Mn: (17.22)
Y a,cos[2(n—1)u],N = 2M +1-odd
L n=1

Here, u= %cose.

Let the side-lobe level be:

E o :
= = voltage ratio 17.23
Ro E, AR, (voltag ) (17.23)
Then the maximum of T,_, isfixed at an argument z,, where
TN (20) =R, (17.24)

where Ty, >1.
Equation (17.24) correspondsto AF (u) = AF ™ (u,).
Obvioudly, z, must satisfy the condition:
z,>1 (17.25)
Then, the portion of AF (u), which correspondsto Ty_,(2) for
| z|< 1, will have levels lower or equal to the specified side-lobe
level R,. This portion of AF must correspond to the out-ot-main-

beam radiation pattern, i.e. the side lobes. The AF is a polynomia
of cosu and the Ty_,(z) isapolynomial of zwhere the limitsfor z

are;
-1<z< 7, (17.26)

13



Since

—1<cosu<l (17.27)
the relation between z and cosu must be set as:
cosu = i (17.28)
Z,

where z, >1.

Array design for an array of N elements— general procedure

1) Expand the AF as given by (17.5) or (17.6) by replacing each
cos(mu) term (m=1,2,...,M ) with the power series of cosu.

2) Determine z, such that Ty_;(7%,) = R, (voltageratio).

3) Substitute cosu = z/ z, in the AF as found in the previous
step.

4) Equate the AF found in Step 3 to T_;(z) and determine the
coefficients for each power of z

Example: Design a DCA (broadside) of N=10 elements with a
major-to-minor lobe ratio of R, =26 dB. Find the excitation

coefficients and form the AF.

Solution:

1. TheAFis:
5

AR,y =Y a,cos[(2n-1)u], u= %cose
n=1
2. Expand AF,,, intermsof cosu:

AF,, = @, cosu + a, cos3u + a; CoSSU + a, CoS /U + a5 cosOu
Here:
cos3u = 4cos® u — 3cosu
cos5u =16cos’ u — 20¢os’ u + 5cosu
cos7u = 64cos’ u—112cos’ u +56cos®u— 7cosu
cos9u = 256¢0s’ U — 576¢0s’ u + 432¢cos’ u—120cos’ u + 9cosu

14



3. Determine z,:

%
R,=26 dB=> R,=10"2 =20
= To(z5) =20
cosh[QCOSh‘l(zo)] =
9cosh™(z,) = cosh™20=13.69

cosh™(z,) =0.41
Z, =cosh0.41
Z, =1.08515

4. Expressthe AFintermsof z=z,cosu:

AF,, =—(a —3a, +5a; — 7a, + 9ay)
—(4a, — 203, + 563, —120a; )
(160a; —112a, + 432a;)
(64a, —576a)

-(256a;) = 9z-1207° + 4327° — 5762" + 2562
Tg\(fz)

CB\I|N© CB\LI|N\| CB\IU'I|NU'| Cg\loo No N | N

5. Finding the coefficients by matching the power terms:
2568 = 2567, = a; = 2.0860
64a, — 576a; = -5762, = a, = 2.8308
168, —112a, + 432a; = 4327, = a, = 4.1184
— 204, + 568, —120a; = —12027) = a, = 5.2073

15



a —3a, +5a, — 7a, +9a; = 92, = a, = 5.8377

25

DT 20+

[T9(2)]|

6. Normalize coefficients with respect to edge element (N=5):
as=1 a,=1.357; a3=1.974; a, =2.496; a =2.789

A 1.0

20
Fig. 6.20b, pp.298, Balanis

AF,, = 2.789cos(u) + 2.496cos(3u) +1.974cos(5u)

+1.357cos( 7u) + cos(9u)

where u = ”—fcose.

|

1.5
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4.3. The maximum affordabled, d,, , for Chebyshev arrays.

This restriction arises from the requirement for a single major
lobe — see aso equation (17.26).

z>-1
= 7, cos(% cosej >-1 (17.29)

For agiven array, when @ variesfrom O to 180°, the argument z
assumes values.

from z= cosﬂ to z= cos(—ﬂj
257 % 7

17



The extreme value zto the left of the abscissais z= z, cos%

(end-fire directions of the AF, & =0° or 180°). This value must

not go beyond z=—1; otherwise minor lobes of levels higher than
1 (higher thanR,) will appear. Therefore, the inequality (17.29)

must hold for @ =0° or 180°:

Z, cos(”dﬂ) >-1= cos(”dﬂj > 1
A A Z,
Let:
y = arccos| —
Z,
Then:
e <T-— 7/=7Z'—aI’CCOS(i]
A Z
= e <1- 1arccos[i) (17.30)
A T Z,
In the previous example:
e < 1—£arccos( L j =1- 039879 _ 0.873
A V4 1.08515 T
d. . <0.8731

5. Directivity of non-uniform arrays
It is difficult to derive closed form expressions for the
directivity of non-uniform arrays. Here, we shall derive
expressions in the form of seriesin the most general case of a
linear array.
The unnormalized array factor is:

N-1 ] ]
AF = g elfhel% s (17.31)
n=0

18



where:
a,, isthe amplitude of the excitation of the n-th element;

B, isthe phase angle of the excitation of the n-th element;
z, isthe z-coordinate of the n-th element.

The maximum AF is;

N-1
=Y a, (17.32)

n=1

The normalized AF is:
A Nil anej B, ej kz, cos¢
AF = — =0 (17.33)
n N—1
AF_ .. Z 3

The beam solid angle is derived as:
Q= ZzHAFn(e)\Zsinede

N-1N-1

Qp=——"— ZZamape i(Bu=Fy) j M=) 4 hdg

(Z an} m=0 p=0 0
n=1
where:

0 k(zm_zp)

Qu=——s Nlezlamape i(8r,) 3 E‘(Zm Z)p)]
PERPS —
[Z aﬂ] 0p=0 o) (17.34)

19



— D, = (17.35)

N-1

i(Bu-Po) sm[k(zm Z )}
k(zy —2p)

m=0

N-—
Zamape
p=0

For equispaced LA (17.35) reduces to:

N-1 )2
£
D, = (17.36)

L i(8,-8,) 28in[(m— p)kd]
ZZamape (m— p)kd

m=0 p=0
because z, =nd.

For equispaced broadside arrays, where 5, = S, for any (m,p),
eguation (17.36) reducesto:

N-1 )2
B
Do = ~Nin . sin[(m— p)kd] (17.37)
m=0 p=0 P (m p)kd

For equispaced broadside uniform arrays:

NZ
Dy = Ni 1212 = pkd] (17.38)
mopo (M- p)kd

20



When the spacing d isamultiple of A/2, equation (17.37)

reduces to:
N-1  \2
£a)
n=1

N—1 , d=
> (@)
n=0

DOZ

%,1 (17.39)

Example: Calculate the directivity of the Dolph—Chebyshev array
designed in the previous exampleif d=4/2.

The 10-element DCA has the following amplitude distribution:
as=1 a,=1357, a;=1.974; a, =2.496, a =2.798
We make use of (17.39):

_ 4@6‘”)2 (0625

D= /
0 &, ., 20797
2> (a,)
n=0

-89 (95dB) (17.40)

6. Half-power beamwidth of aBS DCA.

For large DCA with side lobes in the range (-20 to —60) dB,
the HPBW can be found by introducing a beam-broadening factor,
f, given by:

2
f=1+ 0.636{% cosh[\/ (arccosR,)? — z° }} (17.41)

The HPBW of the DCA isequal to the product of the broadening
factor by the HPBW of the respective uniform linear array:
HPBWyca = T X HPBW 5 (17.42)

In (17.41) R, denotes the side-lobe level (voltage rétio).

21



