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LECTURE 17: LINEAR ARRAYS – PART III
(N-element linear array with uniform spacing and non-uniform
amplitude: binomial array; Dolph–Tschebyscheff array; directivity
and design considerations.)

1. Advantages of linear array with non uniform amplitude
The most often met BSAs, classifed according to the type of

their excitation amplitude, are:
a) the uniform BSA – relatively high directivity, but the side-

lobe levels are high;
b) Dolph–Tschebyscheff (Chebyshev, Чебышев) BSA – for a

given number of elements directivity next after that of the
uniform BSA, but side-lobe levels are the lowest in
comparison with the other two types of arrays for a given
directivity.

c) Binomial BSA – does not have good directivity but has
very low side-lobe levels (when / 2d λ= , there are no side
lobes at all).

2. Array factor (AF) of a linear array with non-uniform
amplitude distribution

fig. 6.17 pp.291, Balanis
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Examples of AFs of arrays of non-uniform amplitude distribution:

a) uniform amplitude distribution (N=5, / 2d λ= , 0 90θ = )

b) triangular (1:2:3:2:1) amplitude distribution (N=5, / 2d λ= ,

0 90θ = )
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c) binomial (1:4:6:4:1) amplitude distribution (N=5, / 2d λ= ,

0 90θ = )

d) Dolph-Tschebyschev (1:1.61:1.94:1.61:1) amplitude
distribution (N=5, / 2d λ= , 0 90θ = )
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e) Dolph-Tschebyschev (1:2.41:3.14:2.41:1) amplitude
distribution (N=5, / 2d λ= , 0 90θ = )

Notice that as the current amplitude is tapered more towards
the edges of the array, the side-lobes tend to decrease, and the
beamwidth tends to increase.

Let us consider a linear array with an even number (2M) of
elements, located symmetrically along the z-axis, with excitation,
which is also symmetrical with respect to 0z = . For a broadside
array, ( 0)β = :
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If the linear array consists of an odd number (2M+1) of
elements, located symmetrically along the z-axis, then the array
factor is:
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The factors (2) in equations (17.2) and (17.4) are unimportant for
the normalized AF. Equations (17.2) and (17.4) can be re-written
as:
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3. Binomial array
The binomial BSA was investigated and proposed by J.S.

Stones to synthesize patterns without side lobes. First, consider a
2–element array (along the z-axis).

z

y

x

d

The elements of the array are identical and their excitation is the
same. Its array factor is of the form:

1AF Z= + , where ( )cosj kdjZ e e θ βψ += = (17.7)
If the spacing is / 2d λ≤ and 0β = (broad-side maximum), this
array will have no side lobes at all.

Second, consider a 2–element array whose elements are
identical and the same as the array given above. The distance
between the two arrays is again d.

d

z

y
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This new array has an AF of the form:
2(1 )(1 ) 1 2AF Z Z Z Z= + + = + + (17.8)

Since (1 )Z+ has no side lobes, 2(1 )Z+ will not have side lobes
either.

Continuing the process for an N-element array produces:
1(1 )NAF Z −= + (17.9)

If / 2d λ≤ , the above AF will not have side-lobes regardless of the
number of elements N. The excitation amplitude distribution can
be obtained easily by the expansion of the binome in (17.9).
Making use of Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
..........................

the relative excitation amplitudes at each element of an (N+1)-
element array can be determined. Such an array with a binomial
distribution of the excitation amplitudes is called a binomial array.
The current (excitation) distribution as given by the binomial
expansion gives the relative values of the amplitudes. It is
immediately seen that there is too wide variation of the amplitude,
which is the major disadvantage of the BAs. The overall efficiency
of such antenna would be very low. Besides, the BA has relatively
wide beam. Its HPBW is the largest as compared to this of the
uniform BSA or the Dolph–Chebyshev array.
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Approximate closed-form expression for the HPBW of a BA with
/ 2d λ= is:

1.06 1.06 1.75

1 2
HPBW

N L Lλ λ
= = =

−
(17.10)

where ( 1)L N d= − is the array’s length. The AFs of 10-element
broadside binomial arrays (N=10) are given below.

Fig. 6.18, pp.293, Balanis
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The directivity of a broadside BA with spacing / 2d λ= can be
calculated from the formula below:
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0 1.77 1.77 1 2D N L λ= = + (17.13)

4. Dolph–Chebyshev (DCA)
Chebyshev≡Tschebyscheff

Dolph proposed (in 1946) a method to design arrays with any
desired side-lobe levels and any HPBWs. This method is based on
the approximation of the pattern of the array by a Chebyshev
polynomial of order m, high enough to meet the requirement for
the side-lobe levels. Actually, a DCA with no side lobes (side-lobe
level of -∞ dB) reduces to the binomial design.

4.1 The Chebyshev polynomials
The Chebyshev polynomials are defined by:
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A nice feature of Chebyschev polynomials is that Tm(z) of any
order m can be derived via a recursion formula, provided Tm-1(z)
and Tm-2(z) are defined.

1 2( ) 2 ( ) ( )m m mT z zT z T z− −= − (17.15)

Explicitly, (17.15) produces:
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(17.16)

If | | 1z < , then Chebyshev polynomials are related to the cosine
functions, see (17.14). One can always expand the function
cos(mx) as a polynomial of cos(x) of order m, e.g.,

2cos2 2cos 1x x= − (17.17)

This is done by making use of Euler’s formula:

( ) (cos sin ) cos( ) sin( )jx m m jmxe x j x e mx j mx= + = = + (17.18)

Similar relations hold for the hyperbolic cosine function. From
the example (17.17), one can see that the Chebyshev argument z is
related to the cosine argument x by:

cos or arccosz x x z= = (17.19)
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Then (17.17) can be written as:

[ ]2
cos(2arccos ) 2 cos(2arccos ) 1z z= −

2
2cos(2arccos ) 2 1 ( )z z T z⇒ = − = (17.20)

Compare it with definition (17.14) or with (17.16)-line 3.

Fig. 6.19, pp.296, Balanis
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Properties of Chebyshev polynomials:
1) All polynomials of any order m pass through the point (1,1).
2) Within the range 1 1z− ≤ ≤ , the polynomials have values

within [-1,1].
3) All nulls occur within 1 1z− ≤ ≤ .
4) The maxima and minima in the [ ]1,1z ∈ − range have values

+1 and –1, respectively.
5) The higher the order of the polynomial, the steeper the slope

for | | 1z >

4.2 Chebyshev array design
The main goal is to approximate the desired AF with a

Chebyshev polynomial such that
• the side-lobe level meets the requirements, and
• the main beam width is small enough.

An array of N elements has an AF, which can be approximated
with a Chebyshev polynomial of order m that is always:

1m N= − , (17.21)
where: 2N M= , if N is even;

2 1N M= + , if N is odd.

In general, for a given side-lobe level, the higher the order of
the polynomial, the narrower the beamwidth. But for m>10, the
difference is not substantial (see the slopes of ( )mT z in the
previous figure).
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The AF of an N-element array (17.5) or (17.6) will be identical
with a Chebyshev polynomial if:

[ ]

[ ]
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cos 2( 1) , 2 1-odd

M

n
n

N M

n
n

a n u N M

T z

a n u N M

=
− +

=


− =

= 
 − = +

∑

∑
(17.22)

Here, cos
d

u
π θ
λ

= .

Let the side-lobe level be:

max
0

1

sl sl

E
R

E AF
= = (voltage ratio) (17.23)

Then the maximum of 1NT − is fixed at an argument 0z , where
max

1 0 0( )NT z R− = , (17.24)
where 1 1NT − > .

Equation (17.24) corresponds to max
0( ) ( )AF u AF u= .

Obviously, 0z must satisfy the condition:

0 1z > (17.25)
Then, the portion of ( )AF u , which corresponds to 1( )NT z− for
| | 1z < , will have levels lower or equal to the specified side-lobe
level 0R . This portion of AF must correspond to the out-ot-main-
beam radiation pattern, i.e. the side lobes. The AF is a polynomial
of cosu and the 1( )NT z− is a polynomial of z where the limits for z
are:

01 z z− ≤ ≤ (17.26)
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Since
1 cos 1u− ≤ ≤ (17.27)

the relation between z and cosu must be set as:

0

cos
z

u
z

= (17.28)

where 0 1z > .

Array design for an array of N elements – general procedure
1) Expand the AF as given by (17.5) or (17.6) by replacing each

cos( )mu term ( 1,2,...,m M= ) with the power series of cosu .

2) Determine 0z such that 1 0 0( )NT z R− = (voltage ratio).
3) Substitute 0cos /u z z= in the AF as found in the previous

step.
4) Equate the AF found in Step 3 to 1( )NT z− and determine the

coefficients for each power of z.

Example: Design a DCA (broadside) of N=10 elements with a
major-to-minor lobe ratio of 0 26R = dB. Find the excitation
coefficients and form the AF.

Solution:
1. The AF is:

[ ]
5

2
1

cos (2 1) , cosM n
n

d
AF a n u u

π θ
λ=

= − =∑
2. Expand 2MAF in terms of cosu :

10 1 2 3 4 5cos cos3 cos5 cos7 cos9AF a u a u a u a u a u= + + + +
Here:

3cos3 4cos 3cosu u u= −
5 3cos5 16cos 20cos 5cosu u u u= − +
7 5 3cos7 64cos 112cos 56cos 7cosu u u u u= − + −

9 7 5 3cos9 256cos 576cos 432cos 120cos 9cosu u u u u u= − + − +
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3. Determine 0z :
26

20
0 026 dB 10 20R R= ⇒ =

9 0( ) 20T z⇒ =
1

0cosh 9cosh ( ) 20z−  = 
1 1

09cosh ( ) cosh 20 3.69z− −= =
1

0cosh ( ) 0.41z− =
0 cosh 0.41z =
0 1.08515z =

4. Express the AF in terms of 0 cosz z u= :

( )
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2 3 4 53
0
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3 4 55
0
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4 57
0

9
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4 20 56 120

160 112 432

64 576

256 9 120 432 576 256
T z

z
AF a a a a a

z

z
a a a a

z

z
a a a

z

z
a a

z

z
a z z z z z

z

= − + − +

+ − + −

+ − +

+ −

+ = − + − +

5. Finding the coefficients by matching the power terms:
9

5 0 5256 256 2.0860a z a= ⇒ =
7

4 5 0 464 576 576 2.8308a a z a− = − ⇒ =
5

3 4 5 0 316 112 432 432 4.1184a a a z a− + = ⇒ =
7

2 3 4 5 0 24 20 56 120 120 5.2073a a a a z a− + − = − ⇒ =
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9
1 2 3 4 5 0 13 5 7 9 9 5.8377a a a a a z a− + − + = ⇒ =

Fig. 6.20b, pp.298, Balanis

6. Normalize coefficients with respect to edge element (N=5):

5 4 3 2 11; 1.357; 1.974; 2.496; 2.789a a a a a= = = = =

( ) ( ) ( )
( ) ( )

10 2.789cos 2.496cos 3 1.974cos 5

1.357cos 7 cos 9

AF u u u

u u

= + +

+ +

where cos
d

u
π θ
λ

= .
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Fig. 6.21, pp.300, Balanis

4.3. The maximum affordable d, maxd , for Chebyshev arrays.
This restriction arises from the requirement for a single major

lobe – see also equation (17.26).
1z ≥ −

0 cos cos 1
d

z
π θ
λ

 ⇒ ≥ − 
 

(17.29)

For a given array, when θ varies from 0 to 180 , the argument z
assumes values:

from 0 cos
d

z z
π
λ

= to 0 cos
d

z z
π
λ

 = − 
 
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The extreme value z to the left of the abscissa is 0 cos
d

z z
π
λ

=

(end-fire directions of the AF, 0 or 180θ = ° ° ). This value must
not go beyond 1z = − ; otherwise minor lobes of levels higher than
1 (higher than 0R ) will appear. Therefore, the inequality (17.29)
must hold for 0θ = ° or 180° :

max max
0

0

1
cos 1 cos

d d
z

z

π π
λ λ

   ≥ − ⇒ ≥ −   
   

Let:

0

1
arccos

z
γ

 
=  

 
Then:

max

0

1
arccos

d

z

π π γ π
λ

 
< − = −  

 

0

1 1
1 arccosmaxd

zλ π
 

⇒ < −  
 

(17.30)

In the previous example:
1 1 0.39879

1 arccos 1 0.873
1.08515

maxd

λ π π
 < − = − = 
 

max 0.873d λ<

5. Directivity of non-uniform arrays
It is difficult to derive closed form expressions for the

directivity of non-uniform arrays. Here, we shall derive
expressions in the form of series in the most general case of a
linear array.

The unnormalized array factor is:
1

cos

0

n n

N
j jkz

n
n

AF a e eβ θ
−

=
= ∑ (17.31)
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where:

na is the amplitude of the excitation of the n-th element;

nβ is the phase angle of the excitation of the n-th element;

nz is the z-coordinate of the n-th element.

The maximum AF is:
1

max
1

N

n
n

AF a
−

=
= ∑ (17.32)

The normalized AF is:
1
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0
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a e e
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−
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−

=
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∑
(17.33)

The beam solid angle is derived as:

( ) 2
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2 sinA nAF d
π

π θ θ θΩ = ∫
( )1 1
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=
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 

∑ ∑ ∫
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where:

( ) ( )
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m pjk z z
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e d

k z z

π
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 − =
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=
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− 

 
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∑ ∑
∑ (17.34)
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0
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=
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For equispaced LA (17.35) reduces to:

( ) [ ]
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(17.36)

because nz nd= .

For equispaced broadside arrays, where m pβ β= for any (m,p),

equation (17.36) reduces to:
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(17.37)

For equispaced broadside uniform arrays:

[ ]
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0 1 1

0 0
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N N
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N
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− −

= =
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21

When the spacing d is a multiple of / 2λ , equation (17.37)
reduces to:

21
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0 1
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, , ,...
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D d
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λ λ

−

=
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 
 
 = =
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∑
(17.39)

Example: Calculate the directivity of the Dolph–Chebyshev array
designed in the previous example if / 2d λ= .

The 10-element DCA has the following amplitude distribution:

5 4 3 2 11; 1.357; 1.974; 2.496; 2.798a a a a a= = = = =
We make use of (17.39):

( )

25

2
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0 2
2

0

4
9.625

2 8.9 (9.5 dB)
20.797

2 ( )

n
n

n
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a

D

a

=

=

 
 
 = = =
∑

∑
(17.40)

6. Half-power beamwidth of a BS DCA.
For large DCA with side lobes in the range (-20 to –60) dB,

the HPBW can be found by introducing a beam-broadening factor,
f, given by:

2
2 2

0
0

2
1 0.636 cosh (arccos )f R

R
π

  = + −    
(17.41)

The HPBW of the DCA is equal to the product of the broadening
factor by the HPBW of the respective uniform linear array:

DCA UAHPBW f HPBW= × (17.42)
In (17.41) 0R denotes the side-lobe level (voltage ratio).


