LECTURE 18: PLANAR ARRAYS, CIRCULAR ARRAYS

1. Planar arrays

Planar arrays are more versatile; they provide more
symmetrical patterns with lower side lobes, much higher
directivity (narrow main beam). They can be used to scan the main
beam toward any point in space.

Applications — tracking radars, remote sensing,
communications, etc.

1.1 Thearray factor of arectangular planar array

Fig. 6.23(b), pp.310, Balanis



The AF of alinear array of M elements along the x-axisis:
AF,, = i | ml€j(m—l)(kdsin9cos¢+ﬁx) (18.1)
m=1

where sind cosg = cosy, isthe directional cosine with respect to

the x-axis. It is assumed that all elements are equispaced with an
interval of d, and aprogressive shift g, . |, denotesthe

excitation amplitude of the element at the point with coordinates:
X=(m-1d,, y=0. Inthefigure above, thisisthe element of the
m-th row and the 1% column of the array matrix.

If N such arrays are placed next to each other in they
direction, arectangular array will be formed. We shall assume
again that they are equispaced at adistance of d,, and thereisa

progressive phase shift along each row of £, . It will be also

assumed that the normalized current distribution along each of the
x-directed array is the same but the absolute values correspond to a
factor of 1, (n=1,...,N). Then, the AF of the entire array will be:

AF = i i, i Imej(m1)(kdx*°“”9"°s¢+f”x)}ej(”‘l)(kdyg”m‘”ﬁ ) (18.2)

n=1 m=1
or
AF =S S, , (18.3)
where:
M . .
SXM _ AFx1: Zlmej(m—l)(kdsnecos¢+ﬂx) and
m=1
Sy = _i | ej(n—l)(kdysinesin¢+ﬁy)
v - My T 1
g n=1 "
In the array factors above:

sSin@cosg = X- f = cosy,

. A A (18.4)
sinfsing=Yy-r =cosy,

The pattern of arectangular array isthe product of the array factors
of thelinear arraysin the x and y directions.



For auniform planar (rectangular) array |, =1,, =1, for al
mand n, i.e, all elements have the same excitation amplitudes.
AF = | i ej(m—l)(kdXSinHCOSqﬂﬂx)i ej(n—l)(kdysinesingp+ﬂy) (18 5)
=1, _

n=1 n=1
The normalized array factor can be obtained as:

B
AF. (6,6) =1~ DAV (18.6)

b — ,
2 ) | 2 |
where:

v, =kd, sin@cos¢ + 3,
y, =kd,singsing+ f3,

~~

The major lobe (principal maximum) and grating lobes of the

terms:
1 sin(M szj
S, = (18.7)
M sin(wxj
2
1 sin[NWZy]
S, =— (18.8)
el
sin| —
2
are located at angles such that:
kd, siné,,cosg,, + B, =+t2mz, m=0,1... (18.9)
kd,sing,sing, + 5, =+2nz, n=0,1,... (18.10)

The principal maxima correspondto m=0, n=0.



In general, f, and f, areindependent from each other. But, if itis
required that themainbeamsof S, and S, intersect (whichis
usually the case), then the common main beam is in the direction:
6=6,and p=¢,, m=n=0 (18.11)
If the principal maximum is specified by (6,,4,) , then the
progressive phases S, and f§, must satisfy:
B, =—kd, sing, cosg, (18.12)
B, =—kd,sing,sing, (18.13)
When S, and f, are specified, the direction of the main beam can
be found by simultaneously solving (18.12) and (18.13):
B0y
ﬂxdy

2 2
J( A {ﬁj 1815
kdy ) | kd,

The grating lobes can be located by substituting (18.12) and
(18.13) in (18.9) and (18.10):

tang, = (18.14)

sindysing, + N4/
ANfm = T (18.16)
sing, cosgy + AX
_ sineocosqjoim/% sineosin%in%
SiNGy, = X = L (18.17)

COSPy, sin Om



To avoid grating lobes, the spacing between the elements must be
lessthan 4 (d, <4 and d, < 1). In order atrue grating lobe to

occur, both equations (18.16) and (18.17) must have areal solution
(G Prm) -

3-D pattern of a 5-element square planar uniform array without
grating lobes (d =4/4, g, = B, =0):
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3-D pattern of a 5-element square planar uniform array without
grating lobes (d =4/2, g, = B, =0):

Relative
magnitude

et e I
il

N
":5‘\\: %
o

P o5 2
fl"\\ r: 'b *0 ¥Tessan
oo LTI, 'o X050 .\‘."‘\
RN
¢! \\\{, 'c ! ..0‘\ %

‘ \ X
b\"“' '::‘\\\\”" "‘ u % .:::::3
:::“3"33.

& 00 e o‘ t‘ \\\\
ZX% o ’*0’0'0 O \\\w} DAL
d!'e" LS .“\:s\\w‘.-.‘jt:fo‘\‘
" ’ ‘

0‘ f

t
l I
,o':,
asle
A Iy
":;’ 0.7, J '
;o,’o . ’ ,MI"” #,/Mr,o
> f

MO AL

h H
P R, o, %ge.
' ’f ;ff’ ‘l’,"’. ‘\\\ " ‘g ,’;fl" ““““““\akk\ AN N 4.0
\\\\. ,f i T -~
'0‘. ‘:‘ \ = "I\ ‘Q\\\ \\t\k 7
" TN W X \\\‘“ .,,,,::';zﬁz:"

SR
\\\\\\\\\ » ¥,
i ’ \\\\\\\\“

G}

x-z plane (¢ = 0°) y-z plane (¢ = 90°)
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Notice the considerable decrease in the beamwidth as the spacing
isincreased from A/4 to A/2.



1.2 The beamwidth of aplanar array

A simple procedure, proposed by R.S. Elliot" will be outlined.
It is based on the use of the beamwidths of the linear arrays
building the planar array.

For alarge array, whose maximum is near the broad side, the
elevation plane HPBW is approximately:

1
6, =
! \/ cos” 6, |:A0; ? cos’ gy +a6,° sin ¢0}

(18.18)

! “Beamwidth and directivity of large scanning arrays’, The Microwave Journal, Jan. 1964, pp.74-82



where: (6,,4,) specify the main-beam direction;
A0, isthe HPBW of alinear broadside array whose

number of elements M and amplitude distribution
Isthe same as that of the x-axis linear arrays
building the planar array;

N iIsthe HPBW of alinear BSA whose number of

elements N and amplitude distribution is the same
as those of the y-axislinear arrays building the
planar array.

The HPBW in the plane, which is orthogonal to the ¢ = ¢,
plane and contains the maximum, is:

b = \/ 1 (18.19)

8% sin® g +46,7 cos’ ¢,

For asguare array (M = N) with amplitude distributions along the x

and y axes of the same type, equations (18.18) and (18.19) reduce
to:

0
g =% _ 2% (18.20)
Cosf, cosH,
P, =20, =10, (18.21)

From (18.20), it is obvious that the HPBW in the elevation plane
very much depends on the elevation angle ¢, of the main beam.

The HPBW in the azimuthal plane ¢, does not depend on the
elevation angle 6,.
The beam solid angle of the planar array can be approximated

by:
Q, =60, (18.22)

or



20529y (18.23)

2
0032490\/|:sin2¢0 Z‘; CoS (,/)0:H:sm o + o cosz¢0}

QA=

y

1.3 Directivity
The genera expression for the calculation of the directivity of

an array is.
2

[ [IAF (65.¢,) F sin6dadsg

00

Dy=4r

For large planar arrays, which are nearly broadside, (18.24)

reduces to:
D, =7D,D, cosé, (18.25)

where D, isthedirectivity of the respective linear BSA, x-axis;
D, isthedirectivity of the respective linear BSA, y-axis.

One can aso use the array solid beam angle Q , in (18.23) to
calculate the approximate directivity of a nearly broadside planar
array:

2
Dy=—2 = 52400 (18.26)

Qs 2 pgeg

Remember:
1) The main beam direction is controlled through the phase

shifts, g, and p, .
2) The beamwidth and side-lobe levels are controlled through
the amplitude distribution.




2. Circular array

2.1 Array factor
The normalized field can be written as.

e KR,
(r,6,9) Zan (18.27)
where:
R, = \/ r? +a®—2ar cosy, (18.28)
For r > a, (18.28) reduces to:
R,=r—acosy, =r—a(a, -f) (18.29)

In rectangular coordinate system:

a, =Xcosg, +ysing,

~

[ =XSin@cosg + ysindsing + Zcosé

10



Therefore:
R, =r —asind(cosg, cos¢ +sing, sing) (18.30)
Finally, R, isapproximated in the phase terms as:

R,=r—asingcos(¢—4¢,) (18.31)
For the amplitude term, the approximation
T (18.32)
R, r

IS made.
Assuming the approximations (18.31) and (18.32) are valid,
the far-zone array field is reduced to:
—jkr N o
E(r,0,0)=—— a elasnteso-a) (18.33)
n=1
where: a, isthe excitation coefficient (amplitude and phase);

Gy = %n isthe angular position of the n-th element.

In general, the excitation coefficient can be represented as:
a=1.,e"%, (18.34)
where |, isthe amplitude term, and ¢, isthe phase of the

excitation of the n-th element relative to a chosen array element of

zero phase.
—jkr N

= E(r,0,¢)=—— —> elttasnoes(o=a)ren] g 35
n=1
The AF is obtained as:
N j[ kasin@cos(¢—¢, )+, |
AF(0,8)=> 1€l e (18.36)
n=1

Expression (18.36) represents the AF of acircular array of N
eguispaced elements. The maximum of the AF occurs when all the
phase termsin (18.36) equal unity, or:

kasin@cos(¢—¢,)+o, =2mr, m=0,£1+2, dl n (18.37)

11



The principal maximum (m=0) is defined by the direction
(6y,4,) , for which:

o, =—kasing,cos(¢, - ¢,), n=12,..,N (18.38)
If acircular array isrequired to have maximum radiation in the
direction (6,,4,) , then the phases of its excitations will have to

fulfil (18.38). The AF of such an array is:
AF (9 ¢) — ZN: | ejka[sinecos((,/)—(,/)n)—sinﬁo cos(¢,—¢,)] (18 39)
’ n .

n=1
N
AF (0,¢) — Z | nelka(COSWn_COSWOn) (1840)
n=1
Here:
y,=cos ‘[sinfcos(p—¢,)] istheanglebetween f and &, ;

Vo = cos *[sing, cos(¢, — 4,)] isthe angle between a, and f .

pointing in the direction of
maximum radiation.

Astheradius of the array a becomes very large as compared to
A, thedirectivity of the uniform circular array (I, =1,, al n)

approaches the value of N.

12
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Uniform circular array 3-D pattern (N=10, ka= 7a =10)
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