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LECTURE 18: PLANAR ARRAYS, CIRCULAR ARRAYS

1. Planar arrays
Planar arrays are more versatile; they provide more

symmetrical patterns with lower side lobes, much higher
directivity (narrow main beam). They can be used to scan the main
beam toward any point in space.

Applications – tracking radars, remote sensing,
communications, etc.

1.1 The array factor of a rectangular planar array

Fig. 6.23(b), pp.310, Balanis
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The AF of a linear array of M elements along the x-axis is:
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where sin cos cos xθ φ γ= is the directional cosine with respect to
the x-axis. It is assumed that all elements are equispaced with an
interval of xd and a progressive shift xβ . 1mI denotes the
excitation amplitude of the element at the point with coordinates:

( 1) xx m d= − , 0y = . In the figure above, this is the element of the
m-th row and the 1st column of the array matrix.

If N such arrays are placed next to each other in the y
direction, a rectangular array will be formed. We shall assume
again that they are equispaced at a distance of yd and there is a

progressive phase shift along each row of yβ . It will be also

assumed that the normalized current distribution along each of the
x-directed array is the same but the absolute values correspond to a
factor of 1 ( 1,..., )nI n N= . Then, the AF of the entire array will be:
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or

M Nx yAF S S= ⋅ , (18.3)

where:
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In the array factors above:
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The pattern of a rectangular array is the product of the array factors
of the linear arrays in the x and y directions.
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For a uniform planar (rectangular) array 1 1 0m nI I I= = , for all
m and n, i.e., all elements have the same excitation amplitudes.
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The normalized array factor can be obtained as:
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The major lobe (principal maximum) and grating lobes of the
terms:
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are located at angles such that:
sin cos 2 , 0,1,x m m xkd m mθ φ β π+ = ± = … (18.9)
sin sin 2 , 0,1,y n n ykd n nθ φ β π+ = ± = … (18.10)

The principal maxima correspond to 0, 0m n= = .
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In general, xβ and yβ are independent from each other. But, if it is

required that the main beams of
MxS and

NyS intersect (which is

usually the case), then the common main beam is in the direction:

0θ θ= and 0φ φ= , 0m n= = (18.11)
If the principal maximum is specified by 0 0( , )θ φ , then the
progressive phases xβ and yβ must satisfy:

0 0sin cosx xkdβ θ φ= − (18.12)

0 0sin siny ykdβ θ φ= − (18.13)

When xβ and yβ are specified, the direction of the main beam can

be found by simultaneously solving (18.12) and (18.13):
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The grating lobes can be located by substituting (18.12) and
(18.13) in (18.9) and (18.10):
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To avoid grating lobes, the spacing between the elements must be
less than λ ( yd λ< and yd λ< ). In order a true grating lobe to

occur, both equations (18.16) and (18.17) must have a real solution
( , )mn mnθ φ .

3-D pattern of a 5-element square planar uniform array without
grating lobes ( / 4d λ= , 0x yβ β= = ):

Fig. 6.24, pp.313 Balanis
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3-D pattern of a 5-element square planar uniform array without
grating lobes ( / 2d λ= , 0x yβ β= = ):

Fig. 6.25, pp.314, Balanis

Notice the considerable decrease in the beamwidth as the spacing
is increased from / 4λ to / 2λ .
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1.2 The beamwidth of a planar array
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A simple procedure, proposed by R.S. Elliot1 will be outlined.
It is based on the use of the beamwidths of the linear arrays
building the planar array.

For a large array, whose maximum is near the broad side, the
elevation plane HPBW is approximately:
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(18.18)

1 “Beamwidth and directivity of large scanning arrays”, The Microwave Journal, Jan. 1964, pp.74-82
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where: 0 0( , )θ φ specify the main-beam direction;

xθ+ is the HPBW of a linear broadside array whose
number of elements M and amplitude distribution
is the same as that of the x-axis linear arrays
building the planar array;

yθ+ is the HPBW of a linear BSA whose number of

elements N and amplitude distribution is the same
as those of the y-axis linear arrays building the
planar array.

The HPBW in the plane, which is orthogonal to the 0φ φ=
plane and contains the maximum, is:
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For a square array ( )M N= with amplitude distributions along the x
and y axes of the same type, equations (18.18) and (18.19) reduce
to:
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(18.20)

h x yφ θ θ= =+ + (18.21)

From (18.20), it is obvious that the HPBW in the elevation plane
very much depends on the elevation angle 0θ of the main beam.
The HPBW in the azimuthal plane hφ does not depend on the
elevation angle 0θ .

The beam solid angle of the planar array can be approximated
by:

A h hθ φΩ = (18.22)
or
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1.3 Directivity
The general expression for the calculation of the directivity of

an array is:
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For large planar arrays, which are nearly broadside, (18.24)
reduces to:

0 0cosx yD D Dπ θ= (18.25)

where xD is the directivity of the respective linear BSA, x-axis;

yD is the directivity of the respective linear BSA, y-axis.

One can also use the array solid beam angle AΩ in (18.23) to
calculate the approximate directivity of a nearly broadside planar
array:
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Remember:
1) The main beam direction is controlled through the phase

shifts, xβ and yβ .

2) The beamwidth and side-lobe levels are controlled through
the amplitude distribution.
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2. Circular array

2.1 Array factor
The normalized field can be written as:

( )
1

, ,
njkRN

n
nn

e
E r a

R
θ φ

−

=
=∑ (18.27)

where:
2 2 2 cosn nR r a ar ψ= + − (18.28)

For r a� , (18.28) reduces to:
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In rectangular coordinate system:
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Therefore:
( )sin cos cos sin sinn n nR r a θ φ φ φ φ= − + (18.30)

Finally, nR is approximated in the phase terms as:

( )sin cosn nR r a θ φ φ= − − (18.31)

For the amplitude term, the approximation
1 1

, all
n

n
R r
� (18.32)

is made.
Assuming the approximations (18.31) and (18.32) are valid,

the far-zone array field is reduced to:
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where: na is the excitation coefficient (amplitude and phase);
2

n n
N

πφ = is the angular position of the n-th element.

In general, the excitation coefficient can be represented as:
nj

na I e α= , (18.34)
where nI is the amplitude term, and nα is the phase of the
excitation of the n-th element relative to a chosen array element of
zero phase.
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The AF is obtained as:
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Expression (18.36) represents the AF of a circular array of N
equispaced elements. The maximum of the AF occurs when all the
phase terms in (18.36) equal unity, or:

( )sin cos 2 , 0, 1, 2, alln nka m m nθ φ φ α π− + = = ± ± (18.37)
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The principal maximum ( 0m = ) is defined by the direction

0 0( , )θ φ , for which:

( )0 0sin cos , 1,2,...,n nka n Nα θ φ φ= − − = (18.38)

If a circular array is required to have maximum radiation in the
direction 0 0( , )θ φ , then the phases of its excitations will have to
fulfil (18.38). The AF of such an array is:
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Here:

[ ]1cos sin cos( )n nψ θ φ φ−= − is the angle between r̂ and ˆ
n

aρ ;

[ ]1
0 0 0cos sin cos( )

n nψ θ φ φ−= − is the angle between ˆ
n

aρ and maxr̂

pointing in the direction of
maximum radiation.

As the radius of the array a becomes very large as compared to
λ , the directivity of the uniform circular array ( 0, allnI I n= )
approaches the value of N.
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Uniform circular array 3-D pattern (N=10,
2

10ka a
π
λ

= = )


