LECTURE 2: Introduction into the Theory of Radiation

(Maxwell’ s equations —revision. Power density and Poynting vector —
revision. Radiated power — definition. Basic principle of radiation. Vector
and scalar potentials—revision. Far fields and vector potentials.)

1. Maxwell’s equations—revision.
(@) the law of induction (Faraday’s law):

0B

—VXxE=—+M* (2.1)
ot
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E (V/m) electric field (electric field intensity)
B (T=Wb/m?)  magnetic flux density
M (V/md) magnetic current density*
Y (Wb=V -s) magnetic flux
e (V) electromotive force

(b) Ampere’s law, generalized by Maxwell to include the displacement
current oD /ot :

D -

VxH="-+] 2.2
o (2.2)
§Hdc = ”[_+de§ o 1 =§Hd (221
c Sq c
H (A/m) magnetic field (magnetic field intensity)
D (C/m?) electric flux density (electric displacement)
J (A/m?) electric current density
| (A) electric current

* M isafictitious quantity, which renders Maxwell’ s equations symmetrical and which proves a very useful mathematical tool
when solving EM boundary value problems applying equivalence theorem.



(c) Gauss electric law:

V.-D=p (2.3)
pDds = [[[ pav=Q (2.34)
S Vsl
p (CIm®)  dectric charge density
Q (O electric charge
Equation (2.3) follows from equation (2.2) and the continuity relation:
v.j=_2 (2.4)
ot

Hint: Take the divergence of both sides of (2.2).

(d) Gauss magnetic law:

V.-B=p,** (2.5)
The equation V - B = 0 follows from equation (2.1), provided that M = 0.
Maxwell’ s equations alone are insufficient to solve for the four vector
quantities: E,D,H and B (twelve scalar quantities). Two additional vector
eguations are needed.

(e) Constitutive relationships
The constitutive relationships describe the properties of matter with respect
to electric and magnetic forces.

g (2.6)

B=pi (2.7)
In the most general case of anisotropic medium, the dielectric permittivity and
the magnetic permeability are tensors. In vacuum, which isisotropic, the
dielectric permittivity and the magnetic permeability are constants (or tensors
whose diagonal elements only are non-zero and are the same):

&, = 8.854187817x10 F/m, u, = 47 x10™" H/m. Inisotropic medium, the
vectors D and E are collinear, and so are the vectors B and H .

E
g

** pm isafictitious quantity introduced via the continuity relation V - M = —dpm/ot. Innature, V- B=0.



Dielectric properties relate to the electric field (electric force). Dielectric
meaterials with relative dielectric permittivity (dielectric constant) ¢, > 1 are

built of atomic/molecular sub-domains, which have the properties of dipoles.
In external electric field, the dipoles tend to orient in such away that their own
fields have a cancellation effect on the external field. The electric force

F. = QE exerted on a point charge Q from a source Q, in such medium will be
g, times weaker than the electric force of the same source in vacuum.

On the contrary, magnetic materials with relative permeability (magnetic
constant) x, > 1 are made of sub-domains, which tend to orient in external

magnetic field in such away, that their own magnetic fields align with the
external field. The magnetic force F,, = QU x B exerted on amoving point
charge Q in such amediumwill be x4, times stronger than the force that this

same source (e.g. electric currents) would create in vacuum.
We shall be mostly concerned with isotropic media, i.e. media where the

equations B = uyu,H and D = g,¢,E hold.

(f) Time-harmonic field analysis
In harmonic analysis of EM fields, the field phasors are introduced:

a(x,y,zt)= Re{ E(x,Y, z)ej“"}

B, B} | (2.8)

h(x,y,z,t)=Re{H(x,y,2)e"}
For clarity, from this point on, we shall denote time dependent field vectors
with lower-case letters, while their phasors will be denoted with upper-case
letters. Complex-conjugate quantities will be denoted with the * sign.

The phasor equations are obtained from the time dependent equations by
simple substitution of the following correspondences:
f(x,y,zt)=F(X,VY,2)

of

(Xaiiiz’t)‘ = JoF(xy,2)
a_f - a_F (;: =X,Y,Z
aé a§ 1 1 ]

For example, Maxwell’ s equations in phasor form are obtained as:

VcH = jo(e jeE+OE+J = jweE+ ], E:g'—j(e"+zj (2.9)
[4))
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~VxE=jo(u'-ju")H+M = jouH + M (2.10)

Thisisthe general form of Maxwell’ s equations. They include the equivalent
(fictitious) magnetic currents M . The dielectric losses (due to aternate field
conductivity we") and the static field conductivity losses o are both
represented by the imaginary part of the complex dielectric permittivity £ .
Often, the dielectric |osses are represented by the dielectric loss-angle o

(S efi e 2

Similarly, the magnetic losses are described by the imaginary part of the
complex magnetic permeability z or by the magnetic loss-angle ¢,,:

H=u"- jﬂ"=ﬂ'(l— Jz—j =u'(1- jtandy,)

In antennatheory, we are mostly concerned with isotropic, homogeneous and
loss-free regions.

2. Power density and vector of Poynting - revision. Radiated power.
2.1. Poynting vector —revision.
In time-domain analysis, the Poynting vector is defined as
p(t) = &(t)x h(t), W/m? (2.11)
Asfollows from Poynting’ s theorem, p isavector representing the density and

the direction of the EM power flow. Thus, the total power leaving certain
volume V is obtained as:

I1(t) = §p Pryds, W (2.12)
Since v
et) = Re{ e’“’t} ;(Ee"‘"+E* "“’t) (2.13)
and
h(t) = Re{He'* | = ;(He""t+H* e ), (2.14)

it can be derived that



p(t):%Re{Ex H*}+%Re{ﬁxl:l ion (2.15)

Pav
Thefirst termin (2.15) has no time dependence. It isthe average value, around
which the power flux density fluctuates. It isavector of unchanging direction
showing a constant outflow (positive value) or inflow (negative value) of EM
power. Intermsof circuit theory, it describes the active power flow, whichis
the time-average power flux:

I, = <ﬁ> P, ds (2.16)
§\2
The second termin (2.15) is avector changing its direction with a double
frequency (2w). It describes the reactive power flow, i.e. the power, which
fluctuates in space (propagates to and fro) without contribution to the overall
transport of energy in any direction.

Definition: The complex Poynting vector is the vector
ﬁ:%éxﬁi (2.17)

whose real part is equal to the average power flux density.

2.2. Radiated power.

Definition: Radiated power isthe average power radiated by the antenna:

_ 1 .,
o9 = P Paas =ff Re{Plas =§<ﬁ‘> Re{ ExH " }as (2.18)
V] ] §vi

3. Basic principle of radiation.

Radiation is produced by accelerated or decelerated
charge (time-varying current element)

Definition: A current element (1 al ) isafilament of length al and current I.
The concept of current element is essential in the theory of EM wave

radiation, since the time-varying current element is the elementary source of

EM radiation. It has the same significance as the concept of a point chargein



electrostatics. Thefield radiated by a complex antennain alinear medium can
be analyzed by making use of the superposition principle after decomposing the
antennainto elementary sources (i.e. into current elements).

Assume the existence of a piece of very thin wire, where electric currents
can be excited. The current i flowing through the wire cross-section AS is
defined as the amount of charge passing through S in 1 second:

| =p-aS-al;=p-aS-v, A (2.19)
where:
p (C/m*) isthe eectric charge volume density
v (m/s) isthe velocity of the charges normal to the cross-section
al; (m/s) isthe distance traveled by achargein 1 second

Equation (2.19) can be also written as
j=p-v, Alm? (2.20)
where j isthe eectric current density. The product A= p-»S isthe charge per

unit length (charge line density) along the wire. Thus, from (2.19) it follows
that

i=v-A (2.21)
It isthen obvious that
ﬂ:)L@:)ua, (2.22)
dt dt

where a (m/s”) is the acceleration of the charge. A time-varying current source
would then be proportional to the amount of charge g enclosed in the volume of
the current element and to its acceleration:

d
= 2.23
al (2.23)

A
Y

It is not immediately obvious from Maxwell’ s equations that the time-
varying current is the source of propagating EM field. The system of the two
first-order Maxwell’ s equations in isotropic medium, though, can be easily



reduced to a single second-order equation either for the E vector, or for the H
vector.

—V><é:,uQE
ot (2.24)
Vxﬁ:gQ§+T
ot

By taking the curl of both sides of the first equation in (2.24) and by making
use of the second equation in (2.24), one obtains:
0% J
VXVxeé+ue—=—u— 2.25
pe= 7 =—H5 (2.25)
From equation (2.25), it is obvious that the time derivative of the electric
currents is the source for the wave-like propagation of the vector € in

homogeneous and isotropic medium. In an analogous way, one can obtain the

wave equation for the magnetic field H and its sources:
-

VxVxﬁ+ye%T?:VxT (2.26)

To create charge accel eration/decel eration one needs sources of
electromotive force and/or discontinuities of the medium in which the charges
move. Such discontinuities can be bends or open ends of wires, change in the
electrical properties of the region, etc. Thereisthe summary of the causes for
radiation:

e |f chargeisnot moving, current is zero = no radiation

¢ |f chargeis moving with auniform velocity = no radiation

e |If charge is accelerated due to electromotive force or is decelerated
due to discontinuities, such as termination, bend, curvature =
radiation occurs

4. Vector and scalar potentials—review.

With very few exceptions, antennas are assumed to radiate in open (free)
space, which determines the specifics of the arising EM problems. Often, the
EM sources (currents and charges) are more or less accurately known. These
sources are then assumed to radiate (in unbounded free space) and it is required
to determine the resulting EM field. Such problems, where the sources are
known, and the reaction (result) is to be determined are called analysis
problems (direct problems). Theinverse (design) problem of finding the



sources of aknown result (reaction) are much more difficult and we shall not
consider them here. To ensure the uniqueness of the solution in an open
(unbounded) problem, one has to impose the radiation boundary condition (BC)
on the EM field vectors, i.e. for distances far away from the source (r — «)

r(E-nHxf) -0

(7L xE) 0 (&20)
The above BCs are also known as the Sommerfeld radiation BCs. Here, n7is
the intrinsic impedance of the medium.

The specifics of the antenna problems lead to the introduction of auxiliary
vector potential functions, which allow simpler and compact solutions.

It is customary to perform the EM analysis for the case of time-harmonic
fields, i.e. interms of phasors. This course will adhere to the tradition.
Therefore, from now on, all field quantities (vectors and scalars) are to be
understood as complex phasor quantities, whose magnitudes correspond to
the magnitudes of the respective sine waves.

4.1. The magnetic vector potential A
We shall first consider only electric sources (J and p), which are actual
currents and charges.

VX E=-jouH
—Toenm (2.28)
VXH = jweE+J
Since V- B =0, one can assume that
B=VxA (2.29)
Substituting (2.29) in (2.28) yields:
E=— joA-V®
ngE:Vx(;VxﬁJ—j (2.30)

From (2.30) it is obvious that a single equation can be written for A. In
Isotropic, homogeneous region, this equation is obtained as.

VxVx A+ joue(joA+V®) = uJ (2.31)
Here, ® denotes the electric scalar potential, which plays essential role in the

analysis of electrostatic fields. To uniquely define the vector field A, we need
to define not only its curl, but also its divergence. There are no restrictionsin



defining V- A. Since VxVx=VV.-V?, equation (2.31) can be simplified by
assuming that

V- A=—jousd (2.32)
Equation (2.32) is known asthe Lorentz' gauge condition. It reduces (2.31) to
VZA+ueA=—-ud (2.33)

If theregion islossless, then ¢ and ¢ are real numbers, and (2.33) can be
written as.

VZA+ BPA=—ud, (2.34)
where 8 = w./ue isthe phase constant. If theregionislossy (whichisrarely
the case in antenna problems), complex permittivity £ and complex
permeability i areintroduced. Then, (2.33) can be written in the form:

VEA-y?*A=—ud (2.35)
Here, y=a+ | B = ja)\/fTE IS the propagation constant, and « isthe

attenuation constant. For example, if the region has |osses due to non-zero
conductivity o, the complex dielectric permittivity isintroduced as.

¥’ = jou(o + jwe) = —wzy[g+j£j (2.36)
w

%/_/
g

4.2. The electric vector potential F .

The magnetic field is asolenoidal field, i.e. V- B =0, because there are
no physically existing magnetic charges. Therefore, there are no physically
existing magnetic currents either. However, the fictitious (equivalent) magnetic

currents M are avery useful tool when applied with the equivalence principle.
These currents are introduced in Maxwell’ s equations in a manner dual to that

of the electric currents J. Now, we shall consider the field due to magnetic
sources only, i.e. we assumethat J =0 and that p =0, and therefore V- D = 0.
Then, the system of Maxwell’ s equationsis.
VXE=—jouH -M
VxH = joeE
Since D is solenoidal, it can be expressed as the curl of a vector, namely
the electric vector potential F:

(2.37)



D=-VxF (2.38)
Equation (2.38) is substituted in the system (2.37). All mathematical
transformations are analogous to those made in Section 4.1. Finaly, itis
shown that afield due to magnetic sources is entirely described by asingle

vector F, which satisfies the Helmholtz' equation

V°F + 0’ uefF =—eM , (2.39)
provided that the Lorentz’ gauge isimposed in the form
V-F =—jous¥ (2.40)

Here, ¥ represents the magnetic scalar potential.

In linear medium, afield due to both types of sources (magnetic and
electric) can be solved for by superimposing the partial field due to the electric
sources only and the one due to magnetic sources only.

TABLE 2.1: FIELD VECTORSIN TERMSOF VECTOR-POTENTIALS

Magnetic vector-potential A Electric vector-potential F

(electric sources only) (magnetic sources only)

B=VxA A="VxA B=-VxF, E=—1VxF

Y7, £
E:_ij_va.Aor Hq:—ja)lf—LVV-lf or
WUE WUE

E. 1 vyvxA_ Y H=- ! V><V><If—_l

joue jwe |oue jou

5. Retarded potentials - review.

Retarded potential is aterm usually used to denote the solution of the
inhomogeneous Helmholtz' equation (in the frequency domain) or that of the
Inhomogeneous wave equation (in the time domain) in an unbounded region.

Assume that an infinitesimal current source (in the form of aDirac &
function) exists at the origin of the coordinate system, and that it has a current
density vector with a z-component only, i.e.

dJ =2 J,8(x)5(y)d(2) (2.41)
Then, according to (2.34), the magnetic vector potential A will also have only a
z-component governed by the following equation in lossless medium:

10



VEA + B2A, =—ud, (2.42)
Thefield A, hasaspherical symmetry (no dependence on the observation
angles 8 and ¢) asimplied by the spherical symmetry of a point source. Thus,

eguation (2.42) reduces to an ordinary differential equation (ODE) with
derivatives only with respect to the distance r, when one writes the Laplace

operator V2 = A in spherical coordinates:

d°A, 2dA, .,
+— + =—ul 2.43
e B A =, (243)
Except at the source, the field A, satisfies the homogeneous version of (2.43):
d°A, 2dA, .,
+— + =0 2.44
dr® rodr P, (244)
The solutions of (2.44) are well known in the case of an unbounded region:
e_jﬁr
A, =C r (2.45)
e+jﬁr
A, =G, (2.46)

r
The solution (2.46) represents an incoming wave, which cannot be a
contribution of the given source. Itisdiscarded. The solution (2.45) represents
an outgoing wave and is physically feasible. Thissolution iscalled aretarded
potential, which refers to the finite velocity with which the field disturbances
(waves) travel and the finite time interval they need in order to reach certain
point of observation. The constant C, has to be determined, making use of the
source and the boundary conditions. Since the region is unbounded, the only
BC left isthe scalar radiation BC*, which is already satisfied by (2.45). By
integrating (2.43) inside a spherical volume surrounding the source (see
Appendix 1), one obtains C, = (1/4x)uJd,. Therefore, the elementary field
produced by an infinitesimal current source, is described only by the z-
component of the magnetic vector potential, whichis:

d J e_jﬂr
Az_:u z Ay

If the point sourceisnot at the origin, but is at some point, Q, of aradius-vector
', then the variabler in (2.50) must be substituted by R, where Risthe

(2.47)

. 0 .
* The radiation BC for ascalar function @ satisfying the wave equation states that lim, _,_, r (a—+ jﬁb} =0
r
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distance between the source at Q(r'") and the observation point P(7):
R=|F-F. Explicitly:

e_JﬁR

4R

dA, = uJ, (2.48)

QO
=i

o
v

Let us consider the case of a continuously distributed source in the form of
J,(x'y',z"). It can beviewed as a cluster of point sources whose joint retarded

potential will produce the overal A, potential in linear medium (principle of
superposition):

_j AR
AP)=[[[ oA = [[[ 13,5 (2.49

To further generalize the above formula, one should assume the existence of
source currents of arbitrary directions, which would produce partial magnetic

vector potentialsin any directions. Note that a current element in the .ff
direction will result in a vector potential A= Agf in the same direction (unless

the medium is anisotropic). Thus,
. ~ e_J:BR
A(P) = J(Q)——d 2.50
(P) jyu Q) g (2.50)

The solution for the electric vector potential due to magnetic current sources
M (Q) is analogous:

12



~ _ E;‘jlyR
F(P)= ||| eM (Q)——d 2.51
(P) j{j Q) g (2.51)
Finally, one should recall that not only volume sources are used to model the
currents of aradiator. A useful approximation, especially of currents at
conducting boundaries, is the surface current density (or simply surface
currents):

ol2
J(Xy)=lims_, j J(xy,2)dz, AlIm —

-0/2

The magnetic vector potential A produced by distributed surface currents will
then be expressed as.
-iBR

e

dsg (2.52)

A(P) = js Juls@=—

Currents on avery thin wire are nicely approximated by alinear source, which
Is exactly the current | flowing through the wire:

Sl
[(2)=lim_ [ I(x v, 2)dxdy, A 4y =
6,—0 5, 5, 7
<> —>X
The respective potential is: Jx
_ IR
A(P) = j ul' (Q) dig (2.53)
5 4R
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6. Far fieldsand vector potentials.

Antennas are sources of finite physical dimensions. The further away from
the antenna the observation point is, the more the wave looks like a spherical
wave and the more the antenna looks like a point source regardless of its actual
shape. In such cases, wetalk about far fields and far zone. The exact meaning
of these terms will be discussed later. For now, we will simply assume that the
vector potentials behave like spherical waves, when the observation point is far
from the source:

— jkR
e J

A=[R A(0.9)+6- A (6.0)+9 A6.9) |72 R (254)

Here, (IQ, 6, @) arethe unit vectors of the spherical coordinate system centred

on the antenna. The term e} shows propagation aong R away from the
antenna with the speed of light. Theterm 1/ R shows the spherical spread of
the potential in space, which resultsin a decrease of its magnitude as the radius
of the sphere increases.

Notice an important feature of the far-field potential: the dependence on
the distance R is separable from the dependence on the observation angle

(6, 9), and it is the same for any antenna: e *?/ R.

Formula (2.54) is afar-field approximation of the vector potential at distant
points. One can arrive a it starting from the original integral in (2.50). When
the observation point is very far from the source volume, the distance Ryq

between the observation and the integration points varies only slightly as Q
sweeps the volume. It isamost the same as the distance from the origin to the
observation point R since we usually centre the coordinate system close to the
sources. The following first-order approximation is made for the integrand:
e—JkRpQ e—jk(R—ﬁ. R)
= (2.55)
Req R

Here,
R  isthe position vector of the observation point P, andR=| R]|;
R isthe position vector of theintegration point Q.

Equation (2.55) is called the far-field approximation. Itisillustrated in the
figures below. Thefirst figure shows the real problem. The second one shows

14



the approximated problem, whereit isin effect assumed that the vectors If\’PQ
and R are pardldl.

z4 P(R.6,9)

Figure 1: Origina problem.

« P(R6,0)

Figure 2. Far-field approximation of the original problem.

We will now apply the far-field approximation to the vector potential in
(2.50). Since R depends only on P:

e—ij

A(P) =
(P) yrmr=

[[[IQe "Ry, (2.56)
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Theintegrand (in (2.56)) does not depend on the distance between source and
observation point. It depends only on the current distribution in the source
volume and the angle between the position vector of the integration point R
and the position vector of the observation point R. Thisfinally explains the
general equation for the far-field vector potential in (2.54).

The far-field approximation of the vector potential leads to much simpler
equations for the far-field vectors. Assume that there are only electrical
currents radiating. Then the EM field is fully described only by the magnetic
vector potential A. One has to substitute (2.54) into the equations of Table 2.1,
where F =0:

E=—jwA-—1 VV.A
. “pe (2.57)
H==-VxA
u
The differential operators Vx and VV - have to be expressed in spherical

coordinates. All terms decreasing with the distance as 1/ R? and faster are
neglected. What remainsis as follows.

1 . _ij -~ ~ 1

E{—Ja)e [0%(9,¢)+¢Aﬂ(9,¢)]}+¥{ L+, R oo (258)

—

E

H

2126 [0n0.0)-38,0.0] |+ {1+, R 259

Here, n=./u /& denotes the wave impedance of the medium. One can write
eguations (2.58) and (2.59) in amore compact way as.

E.=0

E,=—jwA, } = E*=—jwA EZ=0 (2.60)

E, =—]oA,

6!) E¢ T A .Cl)" =2 1" = A
Hy=+]—A,=——=>H " =-] —RXA=—RXE (2.61)

n n n n

0] E

n n
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In an analogous manner, one can obtain the relations between the field

vectors and the electric vector potential F, when magnetic sources only are
present.

Hr=0
H,=-joF, ;=>H" =—joF, H; =0 (2.62)
H,=-]oF,
E.=0
E, =—jonF,=nH, t=E" = jonRxF =-nRxH" (2.63)
E, =+]onk, =-nH,

Thefar field of any antenna (any source) has the following important
features, which become obvious from equations (2.60) through (2.63):
e Thefar field hasno radia components, E; = H;, =0. Sincethe
radial direction is aso the direction of propagation, the far field isa
typica TEM (Transverse Electro-Magnetic) wave.

e The E vector and the H vector are mutually orthogonal, both of
them being also orthogonal to the direction of propagation.
e The magnitudes of the electric field and the magnetic field are

related alwaysas |E=n|H |.
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APPENDIX |

Consider the equation
V20 + k20 =—f 5(X)5(y)5(2) (A-1)
Integrate (A-1) within a sphere with its center at (0,0,0) and aradius R:

[[ V2Ddv+ [f] k’Ddv=—f
[S V[S] V[S]

Thefield @, which is due to this point source, has a spherical symmetry, i.e. it
— jkr

dependsonr only: ®=C , Where C is the constant to be determined. Consider

p
first theintegral:
Iy = [[[ K*®dv (A-3)
V[S]
_jkr R2r x _Jkr
I = ] KCS—dv=[] [k’CE— r2sinadadedr
V[S] r 000 r

. - kR
1, (R) = jazkC ReR,E 1
jk ok
To evauate the integrals in the point of singularity (0,0,0), we let R— 0, i.e. we let the sphere collapse
into apoint. It is obvious that

limg_013(R)=0 (A-4)
Secondly, consider the integral:

PE {{jvszdv: j\{jV-(Vd))dv: %chdg (A-5)

Here, ds = R?sin@drdédef isasurface dement on [, and

ke jkr
V¢=%£f=—c[jke—+e Jf
r

r r2

= 1,(R)=-C(jkR-& "+ &R} [ snadgds

IimR_>0|2(R):—47Z'C (A'6)
Substituting (A-4) and (A-6) into (A-2) and taking limg_,q, yields:

f
= (A-7)

In equation (2.43), the source functionis f = 1J,, thatiswhy C, =(1/4x) uJ,.
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