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LECTURE 3: Radiation from Infinitesimal (Elementary) Sources
(Radiation from an infinitesimal dipole. Duality in Maxwell’s equations.
Radiation from an infinitesimal loop. Radiation zones.)

1. Radiation from an infinitesimal dipole (current element).

Definition: The infinitesimal dipole is a dipole whose length dl is much
smaller than the wavelength λ of the excited wave, i.e. dl λ� (dl <

/50λ ). The infinitesimal dipole is equivalent to a current element

Idl
G

, where
dQ

Idl dl
dt

= −
G G

.

A current element is best illustrated by a very short
(compared to λ) piece of infinitesimally thin wire with
current I. Since the current element is very short, the
current is assumed constant along dl

G
. The ideal current

element is practically unrealizable, but a very good
approximation of it is the short top-hat antenna. To
realize a uniform current distribution along the wire,
capacitive plates are used to provide enough charge
storage at the end of the wire, so that current is not zero
there.

1.1. Magnetic vector potential due to current element
radiation.

The magnetic vector potential (VP) A
G

due to a linear
source is (see eqn. 2.55, Lecture 2):
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Equation (3.2) gives the field due to an electric current element (infinitesimal
dipole) expressed via the magnetic VP A

G
. The field radiated by any complex

antenna in linear medium can be represented as a superposition of the fields
due to the current elements on the antenna surface.

The A
G

vector will now be represented with its spherical components. In
antenna theory, the preferred coordinate system is the spherical one. This is
mostly because the far field radiation is of most significant interest, i.e. the
field is analyzed so very far from the source, that it is assumed to propagate
only radially away from the source. The transformation from rectangular to
spherical coordinates is given by:
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(3.3)

Applying transformation (3.3) to the A
G

vector in (3.2) produces:
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Note that:
1) A
G

does not depend on ϕ (which is due to the cylindrical symmetry
of the dipole);
2) the dependence on r, which is ( /j re rβ− ), is separable from the
dependence on θ .

1.2. Field vectors due to current element radiation.
Let us now find the field vectors H

G
and E

G
.

a)
1

H A
µ

= ∇×
GG

(3.5)

The curl operator ∇× is expressed in spherical coordinates to obtain:

( )1 1
ˆrA

H r A
R r θ ϕ

µ θ
∂ ∂ = ⋅ − ∂ ∂ 

G
(3.6)

The magnetic field H
G

has only a ϕ -component. Finally,
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(3.7)

b)
1 j

E H j A A
j

ω
ωε ωµε

= ∇× = − − ∇∇⋅
G GG G

(3.8)

Explicitly, in spherical coordinates one finds:
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(3.9)

Note: 1) Equations (3.7) and (3.9) show that the EM field generated by the
current element is rather complicated unlike the VP A

G
. The advantage

of using the VP instead of the field vectors is obvious even in this
simplest example.
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2) The field vectors contain terms, which depend on the distance from
the source as (1/r), (1/r2) and (1/r3), and, therefore, some of them can be
neglected at large distances from the dipole.
3) The longitudinal ( r̂ ) components of the field vectors decrease fast as
the field propagates away from the source (as 1/r2 and 1/r3 only).
4) The non-zero transverse field components, Eθ and Hϕ , are orthogonal

to each other, and they have terms, which depend on the distance as 1/r.
These terms differ by a factor of η . They represent the so-called far
field. The concept of far field will be re-visited later, when the radiation
zones are defined.

1.3. Power density and overall radiated power of the infinitesimal dipole.
The complex vector of Poynting P

G
describes the complex power density

flux. It is calculated as

( ) ( ) ( ) ( )* * * *1 1 1ˆ ˆˆ ˆ ˆ
2 2 2r rP E H E r E H E H r E Hθ ϕ θ ϕ ϕθ ϕ θ= × = + × = −

G G G
(3.10)

Substituting (3.7) and (3.9) into (3.10) yields:
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(3.11)

The overall power Π will be calculated over a sphere, and, therefore, only the
radial component of the vector of Poynting rP will have contribution:

( ) 2ˆˆ ˆ sinr

S S

P ds P r P r r d dθθ θ θ ϕΠ = ⋅ = + ⋅ ⋅∫∫ ∫∫
G Gw w (3.12)

( )
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    
(3.13)

The radiated power is equal to the real part of the complex power (the time-
average of the total power flow, see Lecture 2, Section 2). Therefore, the
radiated power of an infinitesimal electric dipole is:

2
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(3.14)
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Here, it is appropriate to introduce the concept of radiation resistance rR , which
can describe the power loss due to radiation in an equivalent circuit of the
antenna:

2
2

1 2
2 r rR I R

I

ΠΠ = ⇒ = ,
2

2
3

id
r

l
R

π η
λ
∆ ⇒ =  

 
The radiation resistance will be discussed later in much more detail.

2. Duality in Maxwell’s equations.
Duality in Electromagnetics means that the EM field is described by two

sets of quantities, which correspond to each other in such a manner that
substituting the quantities from one set with the respective quantities from the
other set in any given equation produces a valid equation (the dual of the given
one).

We shall deduce these dual sets by simple comparison of Maxwell’s
equations describing two dual fields: the field of electric sources, and the field
of magnetic sources. As a word of caution, duality exists even if there are no
sources present in the region of interest. Table 2.1 is just an easy intuitive way
to illustrate duality and to define the dual sets of EM quantities.

TABLE 2.1. DUALITY IN ELECTROMAGNETIC EQUATIONS

Electric sources ( )0, 0J M≠ =
G G

Magnetic sources( )0, 0J M= ≠
G G

E j Hωµ∇× = −
G G

H j E Jωε∇× = +
G G G

D ρ∇ ⋅ =
G

0B∇⋅ =
G

J jωρ∇⋅ = −
G

2 2A A Jβ µ∇ + = −
G G G

4V

j R

dv
e

A J
R

β

µ
π

−

= ∫∫∫
G G

1
H A

µ
= ∇×

GG

j
E j A Aω

ωµε
= − − ∇∇⋅

G GG

H j Eωε∇× =
G G

E j H Mωµ∇× = − −
G G G

mB ρ∇ ⋅ =
G

0D∇⋅ =
G

mM jωρ∇⋅ = −
G

2 2F F Mβ ε∇ + = −
G G G

4V

j R

dv
e

F M
R

β

ε
π

−

= ∫∫∫
G G

1
E F

ε
= − ∇×
G G

j
H j F Fω

ωµε
= − − ∇∇⋅

G G G
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TABLE 2.2. DUAL QUANTITIES IN ELECTROMAGNETICS
given dual
E
G

H
G

J
G

M
G

A
G

F
G

ε
µ

H
G

E−
G

M
G

J−
G

F
G

A−
G

µ
ε

3. Radiation from an infinitesimal magnetic dipole (electric current loop).
3.1. The vector potential and the field vectors of a magnetic dipole (magnetic

current element) mI l+ .
Using the duality theorem, the field of a magnetic dipole is readily found by

simple substitution of the dual quantities in equations (3.4), (3.7) and (3.9)
according to Table 2.2. We shall denote the magnetic current, which is the dual
of the electric current I, by Im (measured in Volts).
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1 1

1 1

E j H

H j E J

ωµ
ωε

−∇× =

∇× = + ⇒

G G
G G G (3.19)

2 2

2 2

E j H M

H j E

ωµ
ωε

−∇× = +

∇× = ⇒

G G G
G G (3.21)

3.2. Equivalence between a magnetic dipole (magnetic current element) and
an electric current loop.

First, we shall prove the equivalence of the fields excited by the following
sources

j J Mωµ ⇔∇×
G G

(3.18)

If the boundary conditions (BCs) for 1E
G

of problem (3.20) are the same as the

BCs for 2E
G

in problem (3.22), and the excitations of both fields fulfill

j J Mωµ = ∇×
G G

, (3.23)

then both fields will be identical, i.e. 1 2E E≡
G G

and 1 2H H≡
G G

.

[L]

I
mI

mI =0

mI =0

mI =0 [C]

∆l

[ ]CS

[L]A

Consider a loop [L] of electric current I. Equation (3.23) can be written in
integral form as:

[ ]CS C

Jds Mdcjωµ =∫∫ ∫
G GG Gv (3.24)

The integral at the left-hand side is the electric current I. M
G

is assumed non-
zero and constant only at the section ( l∆ ), which is normal to the loop’s plane
and passes through the loop’s center. Then,

j I M lωµ ∆= (3.25)

2
1 1E E j Jω µε ωµ∇×∇× − = −
G G G

(3.20)

2
2 2E E Mω µε∇×∇× − = −∇×
G G G

(3.22)
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The magnetic current mI corresponding to the loop [L] will be obtained by

multiplying the magnetic current density M
G

by the area of the loop [L]A , which

yields

[L] mj IA I lωµ ∆= (3.26)

It was shown that a small loop of electric current I and of area A[L] creates EM
field equivalent to that of a small magnetic dipole (magnetic current element)
( )mI l∆ , such that (3.26) holds. Here, it was assumed that the electric current is
constant along the loop, which is true only for very small loops ( 0.01a λ< ,
where a is the loop’s radius). If the loop is larger, then the field expressions
provided below will be inaccurate, and other solutions should be used.

3.3. VP and field vectors of an infinitesimal loop antenna.
The expressions below are derived simply by inserting (3.26) into (3.16)-

(3.17).

2 ( ) sin 1
1

4
j rIA

E e
r j r

β
ϕ

θηβ
π β

− ⋅= − + 
 

(3.27)

2

( ) cos 1
1

2
j r

r
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H j e

r j r
βθβ

π β
− ⋅= + 

 
(3.28)

2
2 2

( ) sin 1 1
1

4
j rIA

H e
r j r r

β
θ

θβ
π β β

− ⋅= − + − 
 

(3.29)

0rE E Hθ ϕ= = = (3.30)

The far-field terms (which have 1/r dependence on the distance from the
source) show the same behaviour as in the case of an infinitesimal dipole
antenna: the electric field Eϕ is orthogonal to the magnetic field Hθ and differs

just by a factor of η ; the longitudinal r̂ components have no far-field terms.
The dependence of the Poynting vector and the complex power on the distance
r is the same as in the case of an infinitesimal electric dipole. The radiated
power can be found to be:

( )241
12rad IAηβ
π

Π = (3.31)
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4. Radiation zones – basic concepts.
The space surrounding the antenna is divided into three regions according to

the predominant field behaviour. The boundaries between the regions are not
distinct and the field behaviour changes very gradually as these boundaries are
crossed. In this course, we shall be mostly concerned with the far-field
characteristics of the antennas.

4.1. Reactive near-field region
This is the region immediately surrounding the antenna, where the reactive

field predominates. For most antennas, it is assumed that this region is a sphere
with the antenna at its centre, and with a radius of

3

0.62
D

r
λ

≈ , (3.32)

where D is the largest dimension of the antenna, and λ is the wavelength of the
radiated field. The above expression will be derived in Section 5. It must be
noted that this limit is most appropriate for wire and waveguide aperture
antennas, while it is not valid for electrically large reflector antennas.

At this point, we shall discuss the general field behaviour making use of our
knowledge of the infinitesimal dipole field. When (3.32) is true, it is also true
for most antennas that 1rβ � . Then, the most significant terms in the field
expressions (3.7) and (3.9) will be

( )
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2

3

3

sin
4

sin
4

cos
4

0

j r

j r

j r

r

r

I l e
H

r
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r
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η θ
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η θ
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−

−

−

∆

∆

∆

≈

≈ −

≈ −

= = =

, 1rβ � (3.33)

This approximated field is purely reactive ( H
G

and E
G

are in phase quadrature).
Actually, the j re β− can be neglected, and after some simple mathematical
transformations it can be clearly shown that: 1) the Hϕ component is exactly

the magnetostatic field of a current filament ( )I l∆ ; 2) the Eθ and rE

components are exactly the electrostatic field of a dipole.
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That the field is purely reactive at points, which are very close to the
infinitesimal dipole, is obvious from the equation (3.13) describing the total
complex power. Its imaginary part is:

{ }
( )

2

3

1
Im

3
I l

r

π η
λ β
∆ Π = −  

 
(3.34)

{ }Im Π will obviously dominate over the radiated power

{ }
2

Re
3 rad

I lπ η
λ
∆ Π = = Π 

 
, (3.35)

when 0r → , since radΠ does not depend on r at all. In the near-field region,
the radial reactive power flow density rP has predominant magnetic character
(negative imaginary number) and decreases as (1/r5):

2 2

3 5

sin
8

near
r

I l
P j

r

η θ
λ β
∆ = −  

 
(3.36)

The Pθ has the same order of dependence on r but has predominant electric
character:

( )
( )

2

22 3

cos sin 1
1

16
near I l

P j
r r

θ
θ θηβ

π β
∆  

= + 
  

(3.37)

Reminder: According to Poynting’s theorem

( ) ( ) 2 2 2* * *1 1 1 1 1
2

2 2 2 4 4
i iH M E J E H E j H Eσ ω µ ε − ⋅ + ⋅ = ∇ ⋅ × + + − 

 

G G G G G G G G G

or
( )2s rad loss m ej w wω= + + −p p p

where:

( )*1
2

i i
s H M E J= − ⋅ + ⋅

G G G G
p is the supplied complex power density, W/m3;

( )*1
2rad E H P= ∇⋅ × = ∇⋅

G G G
p is the complex power density entering or

leaving the point, W/m3;
21

2loss Eσ=
G

p is the loss power density (real only), W/m3;

21
4mw Hµ=

G
is the time-average magnetic energy density, J/m3;
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21
4ew Eε=

G
is the time-average electric energy density, J/m3.

4.2. Radiating near-field (Fresnel) region
This is an intermediate region between the reactive near-field region and the

far-field region, where the radiation field predominates but the angular field
distribution is still dependent on the distance from the antenna. In this region,

1rβ ≥ . For most antennas, it is assumed that the Fresnel region is enclosed
between two spherical surfaces:

3 22
0.62

D D
r

λ λ
≤ ≤ (3.38)

Here, D is the largest dimension of the antenna. This region is called Fresnel
region because its field expressions reduce to Fresnel integrals.

The fields of an infinitesimal dipole in the Fresnel region are obtained by
neglecting the higher-order (1/r)n-terms:

( )

( )
2

( )
sin

4

cos
2

sin
4

0

j r

j r

r

j r

r

j I l e
H

r

I l e
E

r

I l e
E j

r
H H E

β

ϕ

β

β

θ

θ ϕ

β θ
π

η θ
π

βη θ
π

−

−

−

∆

∆

∆

⋅ ⋅≈ ⋅

⋅
≈ ⋅

⋅ ⋅
≈ ⋅

= = =

, 1rβ ≥ (3.39)

The radial component rE is still not negligible, but the transverse components
( Eθ and Hϕ ) are dominant.

4.3. Far-field (Fraunhofer) region
Only terms 1/ r∼ are considered, when 1rβ � . The angular field

distribution does not depend on the distance from the source any more, i.e. the
far-field pattern is already well established. The field is a transverse EM wave.
For most antennas, the far-field region is defined as:

22D
r

λ
≥ (3.40)
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The far-field of the infinitesimal dipole is obtained as:

( )

( )
sin

4

sin
4

0

0

j r

j r

r

r

j I l e
H

r

I l e
E j

r
E

H H E

β

ϕ

β

θ

θ ϕ

β θ
π

βη θ
π

−

−

∆

∆

⋅ ⋅≈ ⋅

⋅ ⋅
≈ ⋅

≈
= = =

, 1rβ � (3.41)

Important features of the far field:
1) no radial components;
2) the angular field distribution is independent of r;
3) E H⊥
G G

;

4) i

E
Z

H
θ

ϕ

η = = ;

5) ( )
2

2*1 1 1
ˆ ˆ

2 2 2

E
P E H r H rθ

ϕη
η

= × = =
G G G

. (3.42)

5. Region separation and accuracy of radiation integral approximations.
In most practical cases, the closed form solution of the radiation integral

(the VP integral) is impossible. For the evaluation of the far fields or the fields
in the Fresnel region, standard approximations are applied, from which the
boundaries of these regions are derived.

Consider the VP integral for a linear current source:
( )'

'
4

j R

L

I l
e dlA

R
βµ

π
−= ∫

GG
, (3.43)

where ( ) ( ) ( )2 2 2
' ' 'R x x y y z z= − + − + − . The observation point is at

( , , )P x y z , and the source point is located at ( ', ', ')Q x y z , which is along the
integration contour L.

So far, we have analyzed just the infinitesimal dipole, whose current is
constant along L. In practical antennas, this is rarely true, and the solution of
(3.43) can be very complicated depending on the function ( )'I l

G
. Besides,

because of the infinitesimal size of the source, the distance between the
integration point and the observation point R was considered constant and equal
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to the distance from the centre of the dipole 2 2 2R r x y z= = + + . The closer
the observation point to a finite-size antenna, the less accurate this assumption
is.

The integral kernel
j Re

R

β−

will be divided into two factors: the amplitude

factor ( )1/ R , and the phase factor j Re β− . The amplitude factor is not very

sensitive to errors in R. In both, the Fresnel and the Fraunhofer regions, the
approximation

1 1
R r
≈ (3.44)

is acceptable.
The above approximation is unacceptable in the phase term. To keep the

phase term error low enough, the maximum error in ( )Rβ must be kept

below /8 22.5π = D .
Neglect the antenna dimensions along the x and the y-axes (infinitesimally

thin wire). Then,

( )22 2' ' 0 'x y R x y z z= = ⇒ = + + − (3.45)

( ) ( )2 2 2 2 2 2' 2 ' ' 2 ' cosR x y z z zz r z rz θ⇒ = + + + − = + − ⋅ (3.46)

Using the binomial expansion♣:

( ) ( ) ( ) ( ) ( )1/ 2 1/ 2 3/ 2 22 2 2 2 2

1 1
1 2 2' 2 'cos ' 2 'cos
2 2

R r r z rz r z rzθ θ
− −

 − 
 ≈ + − + − +"

2 2 2
2' ' cos

'cos
2 2

z z
R r z O

r r

θθ− + − +� (3.47)

2O denotes terms of the order (1/r2) and higher. Simplifying further, one
arrives at:

2 2 21
'cos ' sin

2
R r z z O

r
θ θ= − + + (3.48)

♣ ( ) 1 2 2 3 3( 1) ( 1)( 2)
2! 3!

n n n n nn n n n n
a b a na b a b a b− − −− − −+ = + + + +"
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(a) far-field approximation
Only the first two terms in the expansion (3.48) are taken into account:

'cosR r z θ≈ − (3.49)

r
G

R
G

dz

z

x

y

( , , )P r θ ϕ

0
/2D

( ')Q z

θ
'θ

'ϕ ϕ=

r
G

R
G

dz

z

x

y

( , , )P r θ ϕ

0
/2D

( ')Q z

'θ θ=

'ϕ ϕ=

'cosz θ

(a) Finite-size dipole

(b) Finite-size dipole - far-field approximations

The most significant error term in R is
2

21 '
sin

2
z

e
r

θ= ,

which has its maximum at / 2θ π= ,
2

max

'
2
z

e
r

= . The consequence is a

maximum error in ( )Rβ , which has to be kept below /8π :
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2
max'

2 8
z

r

πβ ⋅ ≤

max'z is actually half the largest dimension of the antenna, max' / 2z D= . Now, it
is easy to find the smallest distance from the antenna centre r, at which the
phase error is acceptable:

2

2
D

r
λ

≥ (3.50)

This result is identical with the far-zone limit defined in (3.40).

(b) radiating near-field (Fresnel region) approximation
This region is adjacent to the Fraunhofer region, so its upper boundary is

specified by:
22D

r
λ

≤ (3.51)

When the observation point belongs to this region, one should take one more
term in the expansion of R as given by (3.48) to reduce sufficiently the phase
error. The approximation this time is:

2 21
'cos ' sin

2
R r z z

r
θ θ≈ − + (3.52)

The most significant error term is:
3

2
2

1 '
cos sin

2
z

e
r

θ θ= (3.53)

The angles oθ must be found, at which e has its extrema.

( )
3

2 2
2

'
sin sin 2cos 0

2
e z

r
θ θ θ

θ
∂ = − + =
∂

(3.54)

The roots of (3.54) are:

( )
(1)

(2),(3)

0 min

arctan 2 54.7 max

o

o

θ

θ

= →

= ± ≈ ± →D
(3.55)

Following a procedure similar to case (a), one obtains:
3

(2) 2 (2)
max 2

3

max 2

2 1 '
cos sin

2

812 3

o o

z
e

r

D
e

r

πβ θ θ
λ

π πβ
λ

= ⋅

⇒ = ≤
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3 32
0.62

3 3

D D
r

λ λ
⇒ ≥ = (3.56)

Equation (3.56) states the lower boundary of the Fresnel region (for wire
antennas) and is identical to the left-hand side of (3.38).


