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The radiation pattern (RP) (or antenna pattern) is the representation
of the radiation properties of the antenna as a function of space
coordinates.

The trace of the spatial variation of the received/radiated power at a
constant radius from the antenna is called the power pattern.

The trace of the spatial variation of the electric (magnetic) field at a
constant radius from the antenna is called the amplitude field pattern.

LECTURE 4: Fundamental Antenna Parameters
(Radiation pattern. Pattern beamwidths. Radiation intensity. Directivity.
Gain. Antenna efficiency and radiation efficiency. Frequency bandwidth.
Input impedance and radiation resistance. Antenna equivalent area.
Relationship between directivity and area.)

The antenna parameters describe the antenna performance with respect to space
distribution of the radiated energy, power efficiency, matching to the feed
circuitry, etc. Many of these parameters are interrelated. There are several
parameters not described here, such as antenna temperature and noise
characteristics. They will be discussed later in conjunction with radiowave
propagation and system performance.

1. Radiation pattern

The RP is measured in the far-field region, where the spatial (angular)
distribution of the radiated power does not depend on the distance. One can
measure and plot the field intensity, e.g. ( ),E θ ϕ

G
∼ , or the received power
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Usually, the pattern describes the normalized field (power) values with
respect to the maximum value.
Note: The power pattern and the amplitude field pattern are the same when
computed and plotted in dB.
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The pattern can be a 3-D plot (both θ and ϕ vary), or a 2-D plot. A 2-D
plot is obtained as an intersection of the 3-D one with a given plane, usually a

.constθ = plane or a .constϕ = plane that must contain the pattern’s maximum.

θ

ϕ
90θ = D

90ϕ = D

azimuth plane

elevation plane

Plotting the pattern: the trace of the pattern is obtained by setting the length of
the radius-vector ( ),r θ ϕG

proportional to the strength of the field ( ),E θ ϕ
G

(in

the case of an amplitude field pattern) or proportional to the power density

( ) 2
,E θ ϕ

G
(in the case of a power pattern).

Elevation plane:

sinθz

constϕ =

1r =G
1/ 2r =G

45θ = D
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Some concepts related to the pattern terminology

a) Isotropic pattern is the pattern of an antenna having equal radiation in all
directions. This is an ideal (not physically achievable) concept.
However, it is used to define other antenna parameters. It is represented
simply by a sphere whose center coincides with the location of the
isotropic radiator.

b) Directional antenna is an antenna, which radiates (receives) much more
efficiently in some directions than in others. Usually, this term is applied
to antennas whose directivity is much higher than that of a half-
wavelength dipole.

c) Omnidirectional antenna is an antenna, which has a non-directional
pattern in a given plane, and a directional pattern in any orthogonal plane
(e.g. single-wire antennas).
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d) Principal patterns are the 2-D patterns of linearly polarized antennas,
measured in the E-plane (a plane parallel to the E

G
vector and containing

the direction of maximum radiation) and in the H-plane (a plane parallel
to the H

G
vector, orthogonal to the E-plane, and containing the direction

of maximum radiation).
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e) Pattern lobe is a portion of the RP whose local radiation intensity
maximum is relatively weak.

Lobes are classified as: major, minor, side lobes, back lobes.
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Radiation intensity in a given direction is the power per unit solid
angle radiated in this direction by the antenna.

2. Pattern beamwidth
Half-power beamwidth (HPBW) is the angle between two vectors,

originating at the pattern’s origin and passing through these points of the major
lobe where the radiation intensity is half its maximum.

First-null beamwidth (FNBW) is the angle between two vectors,
originating at the pattern’s origin and tangent to the main beam at its base. It
very often approximately true that FNBW≈2⋅HPBW.

The HPBW is the best parameter to describe the antenna resolution properties.
In radar technology as well as in radioastronomy, the antenna resolution
capability is of primary importance.

3. Radiation intensity

a) Solid angle
One steradian (st) is the solid angle with its vertex at the center of a
sphere of radius r, which is subtended by a spherical surface area equal to
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R

R

R

that of a square with each side of length r. In a closed sphere, there are
( )4π steradians.

2

S

r
ΩΩ = , sr (4.1)

Note: The above definition is analogous to the definition of a 2-D angle in
radians, /lωω ρ= , where lω is the length of the arc segment supported by
the angle ω in a circle of radius ρ .

The infinitesimal area ds on a surface of a sphere of radius R in spherical
coordinates is:

2 sinds r d dθ θ ϕ= , m2 (4.2)
Therefore,

sind d dθ θ ϕΩ = , sr (4.3)

b) Radiation intensity U

radd
U

d

Π=
Ω

, W/sr (4.4)

A useful expression, equivalent to (4.4) is given below:

4

rad Ud
π

Π = Ω∫∫w , W (4.5)

From now on, we shall denote the radiated power simply by Π . There is a
direct relation between the radiation intensity U and the radiation power
density P (that is the Poynting vector magnitude of the far field). Since

d
P

ds

Π= , W/m2 (4.6)

then:
2U r P= ⋅ (4.7)
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The power pattern is a trace of the function | ( , ) |U θ ϕ usually normalized to
its maximum value. The normalized pattern will be denoted as ( ),U θ ϕ .

It was already shown that the power density of the far field depends on the
distance from the source r as 1/r2, since the far field magnitudes depend on r
as 1/r. Thus, the radiation intensity U depends only on the direction ( ),θ ϕ
but not on the distance r.

In the far-field zone, the radial field components vanish, and the remaining
transverse components of the electric and the magnetic far fields are in
phase and have magnitudes related by:

| | | |E Hη=
G G

(4.8)
That is why the far-field Poynting vector has only a radial component and it
is a real number corresponding to the radiation density:

2
21 1 | |

| |
2 2rad

E
P P Hη

η
= = =

GG
(4.9)

Then, one obtains for the radiation intensity in terms of the electric field:

( )
2

2, | |
2
r

U Eθ ϕ
η

=
G

(4.10)

Equation (4.10) leads to a useful relation between the power pattern and the
amplitude field pattern:

( ) ( ) ( ) ( ) ( )
2

2 2 2 21
, | , , , , | | , , |

2 2 p p

r
U E r E r E Eθ ϕ θ ϕθ ϕ θ ϕ θ ϕ θ ϕ θ ϕ

η η
= + = + (4.11)

Here, ( ),
p

Eθ θ ϕ and ( ),
p

Eϕ θ ϕ denote the far-zone field patterns.

Examples:
1)Radiation intensity and pattern of an isotropic radiator

( ) 2, ,
4

P r
r

θ ϕ
π
Π=

( ) 2, .
4

U r P constθ ϕ
π

Π= ⋅ = =

( ), 1U θ ϕ⇒ =
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Directivity of an antenna in a given direction is the ratio of the radiation
intensity in this direction and the radiation intensity averaged over all
directions. The radiation intensity averaged over all directions is equal to
the total power radiated by the antenna divided by 4π . If a direction is
not specified, then the direction of maximum radiation is implied.

The normalized pattern of an isotropic radiator is simply a sphere of a unit
radius.

2) Radiation intensity and pattern of an infinitesimal dipole
From equation (3.33), Lecture 3, the far-field term of the electric field is:

( ) ( )sin , sin
4

j rI l e
E j E

r

β

θ
βη θ θ ϕ θ

π

−
∆⋅ ⋅

= ⋅ ⇒ =

( )222
2 2

2| | sin
2 32

I lr
U E

βη θ
η π

∆⋅
= ⋅ = ⋅

G

( ) 2, sinU θ ϕ θ⇒ =

4. Directivity
4.1. Definitions and examples

It can be also defined as the ratio of the radiation intensity (RI) of the antenna
in a given direction and the RI of an isotropic radiator fed by the same amount
of power.

( ) ( ) ( ), ,
, 4

av

U U
D

U

θ ϕ θ ϕθ ϕ π= =
Π

, (4.12)

and

max
max 0 4

U
D D π= =

Π
The directivity is a dimensionless quantity. The maximum directivity is always

1≥ .
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Partial directivity of an antenna is specified for a given polarization of the
field. It is defined as that part of the radiation intensity, which corresponds
to a given polarization, divided by the total radiation intensity averaged
over all directions.

Examples:

1) directivity of an isotropic source
( )

( ) ( )

0

0

, .

4

,
, 4 1

U U const

U

U
D

θ ϕ
π

θ ϕθ ϕ π

= =
⇒ Π =

⇒ = =
Π

0 1D⇒ =

2) directivity of an infinitesimal dipole

( ) ( )

( ) ( ) ( )

22
2

2

2

, sin
32

, sin ; , ,

I l
U

U U M U

βθ ϕ η θ
π

θ ϕ θ θ ϕ θ ϕ

∆⋅
= ⋅

⇒ = = ⋅
As shown in (4.5)

2
2

0 0

sin sin

8
3

Ud M d d

M

π π

θ θ θ ϕ

π

Π = Ω = ⋅ ⋅

Π = ⋅

∫∫ ∫ ∫w

( ) ( ) 2, 3
, 4 sin

2

U
D

θ ϕθ ϕ π θ= =
Π

0 1.5D⇒ =

Exercise: Calculate the maximum directivity of an antenna with a radiation
intensity sinU M θ= . (Answer: 0 4 / 1.27D π= � )

The total directivity is the sum of the partial directivities for any two orthogonal
polarizations:
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The beam solid angle AΩ of an antenna is the solid angle
through which all the power of the antenna would flow, if its
radiation intensity were constant and equal to the maximum
radiation intensity U for all angles within Ω .

0D D Dθ ϕ= + , (4.13)
where:

4
U

D θ
θ

θ ϕ

π=
Π + Π

4
U

D ϕ
ϕ

θ ϕ

π=
Π + Π

.

4.2. Directivity in terms of relative radiation intensity ( ),U θ ϕ
( ) ( ), ,U M Uθ ϕ θ ϕ= ⋅ (4.14)

( )
2

4 0 0

, sinUd M U d d
π π

π

θ ϕ θ θ ϕΠ = Ω = ⋅∫∫ ∫ ∫w (4.15)
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θ ϕ θ θ ϕ
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(4.16)

( )
0 2

0 0

1
4

, sin

D

U d d
π ππ

θ ϕ θ θ ϕ
=

∫ ∫
(4.17)

4.3. Beam solid angle AΩ

( )
2

0 0

, sinA U d d
π π

θ ϕ θ θ ϕΩ = ∫ ∫ (4.18)

The relation between the maximum directivity and the beam solid angle is
obvious:

0

4

A

D
π=

Ω
(4.19)
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4.4. Approximate expressions for directivity
The complexity of the calculation of the antenna directivity 0D depends on

the power pattern ( ),U θ ϕ , which has to be integrated over a spherical surface.

In most practical cases, this function is not available in closed analytical form
(e.g. it might be a data set). Even if it is available in closed analytical form, the
integral in (4.17) may not have a closed analytical solution. In practice, simpler
although not exact expressions are often used for approximate and fast
calculations. These formulas are based on the two orthogonal-plane half power
beam widths (HPBW) of the pattern.

a) Kraus’ formula

For antennas with narrow major lobe and with very negligible minor lobes,
the beam solid angle AΩ is approximately equal to the product of the HPBWs
in two orthogonal planes:

1 2AΩ = Θ Θ , (4.20)
where the HPBW angles are in radians. Another variation of (4.20) is

0
1 2

41000
D

Θ ΘD D� , (4.21)

where 1ΘD and 1ΘD are in degrees.

b) Formula of Tai and Pereira

0 2 2
1 2

32ln 2
D

Θ + Θ
� (4.22)

The angles in (4.22) are in radians.

For details see: C. Tai and C. Pereira, “An approximate formula for
calculating the directivity of an antenna,” IEEE Trans. on AP, vol. AP-24, No.
2, March 1976, pp. 235-236.
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The gain G of an antenna is the ratio of the radiation intensity U in a
given direction and the radiation intensity that would be obtained, if
the power fed to the antenna were radiated isotropically.

5. Antenna gain

( ) ( ),
, 4

in

U
G

P

θ ϕθ ϕ π= (4.23)

The gain is a dimensionless quantity, which is very similar to the directivity D.
When the antenna has no losses, i.e. when inP = Π , then ( ) ( ), ,G Dθ ϕ θ ϕ= .

Thus, the gain of the antenna takes into account the losses in the antenna
system. It is calculated via the input power Pin, which is a measurable quantity,
unlike the directivity, which is calculated via the radiated power Π .

There are many factors that can worsen the transfer of energy from the
transmitter to the antenna (or from the antenna to the receiver):

• Mismatch losses
• Losses in the transmission line
• Losses in the antenna: dielectric losses, conduction losses, polarization

losses
The power radiated by the antenna is always less than the power fed to the
antenna system, inPΠ ≤ , unless the antenna has integrated active devices. That
is why usually G D≤ .

According to IEEE Standards, the gain does not include losses arising from
impedance mismatch and from polarization mismatch.

Therefore, the gain takes into account only the dielectric and conduction losses
of the antenna system itself.

The radiated power is related to the input power through a coefficient called
the radiation efficiency:

, 1ine P eΠ = ⋅ ≤ (4.24)

( ) ( ), ,G e Dθ ϕ θ ϕ⇒ = ⋅ (4.25)
Partial gains with respect to a given field polarization are defined in the

same way as it is done with the antenna partial directivities, see equation (4.13).

!
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The beam efficiency is the ratio of the power radiated in a cone of angle

12Θ and the total radiated power. The angle 12Θ can be generally any
angle, but usually this is the first-null beam width.

6. Antenna efficiency
The total efficiency of the antenna te is used to estimate the total loss of

energy at the input terminals of the antenna and within the antenna structure. It
includes all mismatch losses and the dielectric/conduction losses (described by
the radiation efficiency e as defined by the IEEE Standards):

Nt p r c d p r

e

e e e e e e e e= = ⋅ (4.26)

Here: er is the reflection (impedance mismatch) efficiency,
ep is the polarization mismatch efficiency,
ec is the conduction efficiency,
ed is the dielectric efficiency.

The reflection efficiency can be calculated through the reflection coefficient Γ
at the antenna input:

21 | |re = − Γ (4.27)
Γ can be either measured or calculated, provided the antenna impedance is
known:

in c

in c

Z Z

Z Z

−Γ =
+

(4.28)

inZ is the antenna input impedance, and cZ is the characteristic impedance of
the feed line. If there are no polarization losses, then the total efficiency is
related to the radiation efficiency as:

( )21 | |te e= ⋅ − Γ (4.29)

7. Beam efficiency

( )

( )

12

0 0
2

0 0

, sin

, sin

U d d

BE

U d d

π

π π

θ ϕ θ θ ϕ

θ ϕ θ θ ϕ

Θ

=
∫ ∫

∫ ∫
(4.30)
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This is the range of frequencies, within which the antenna
characteristics conform to a specified standard.

If the antenna has its major lobe directed along the z-axis ( 0θ = ), formula
(4.30) defines the BE. If 1θ is the angle where the first null (or minimum)
occurs in two orthogonal planes, then the BE will show what part of the total
radiated power is channeled through the main beam.

Very high beam-efficiency antennas are needed in radars, radiometry and
astronomy.

8. Frequency bandwidth (FBW)

Antenna characteristics, which should conform to certain requirements, might
be: input impedance, radiation pattern, beamwidth, polarization, side-lobe level,
gain, beam direction and width, radiation efficiency. Often, separate
bandwidths are introduced: impedance bandwidth, pattern bandwidth, etc.

The FBW of broadband antennas is expressed as the ratio of the upper to the
lower frequencies, where the antenna performance is acceptable:

max

min

FBW
f

f
= (4.31)

Recently, broadband antennas with FBW as large as 40:1 have been designed.
Such antennas are referred to as frequency independent antennas.

For narrowband antennas, the FBW is expressed as a percentage of the
frequency difference over the center frequency:

max min

0

FBW 100
f f

f

−= ⋅ % (4.32)

Usually, ( )0 max min / 2f f f= + , or 0 max minf f f= .
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9. Input impedance
A A AZ R jX= + , (4.33)

where:

AR is the antenna resistance

AX is the antenna reactance.
Generally, the antenna resistance has two terms:

A r lR R R= + , (4.34)
where:

rR is the radiation resistance

lR is the loss resistance.
The antenna impedance is related to the radiated power Π , the dissipated
power lP , and the stored reactive energy, in the following way:

*
0 0

2 ( )
1
2

r d m e
A

P P j W W
Z

I I

ω+ + −= (4.35)

Here, 0I is the current at the antenna terminals; mW is the average magnetic
energy and eW is the average electric energy stored in the near-field region.
When the stored magnetic and electric energy are equal, a condition of
resonance occurs, and the reactive part of AZ vanishes. For a thin dipole
antenna this occurs when the antenna length is close to a multiple of a half
wavelength.

9.1. Radiation resistance.
The radiation resistance relates the radiated power to the voltage (or current)
at the antenna terminals. For example, in the Thevenin equivalent, the
following holds:

2

2
,

| |rR
I

Π= Ω (4.36)

Example: Find the radiation resistance of an infinitesimal dipole in terms of
the ratio ( / )l λ∆ .

We have already derived the radiated power of an infinitesimal dipole in
(3.14), Lecture 3, as:



17

2

3
id I lπη

λ
∆ Π =  

 
(4.37)

2
2
3

id
r

l
R

πη
λ
∆ =  

 
(4.38)

9.2. Equivalent circuits of the transmitting antenna

antenna

generator

a

bgV

gR

gX

AX

lR

rR

(a) Thevenin equivalent

gI gG gB AB lG rG

(b) Norton equivalent

In the above model, it is assumed that the generator is connected to the antenna
directly. If there is a transmission line between the generator and the antenna,
which is usually the case, then g g gZ R jX= + will represent the equivalent

impedance of the generator transferred to the input terminals of the antenna.
Transmission lines themselves often have significant losses.
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The maximum power delivered to the antenna is achieved when conjugate
matching of impedances is in place:

A l r g

A g

R R R R

X X

= + =

= −
(4.39)

Using circuit theory, one can easily derive the following formulas:
a) power delivered to the antenna

( )
2| |

8
g

A
r l

V
P

R R
=

+
(4.40)

b) power dissipated as heat in the generator

( )
2 2| | | |

8 8
g g

g A
g r l

V V
P P

R R R
= = =

+
(4.41)

c) radiated power

( )

2

2

| |

8
g r

r

r l

V R
P

R R
Π = =

+
(4.42)

d) power dissipated as heat in the antenna

( )

2

2

| |

8
g l

l

r l

V R
P

R R
=

+
(4.43)
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9.3. Equivalent circuits of the receiving antenna

antenna

load LZ

(b) Norton equivalent

AB lG rGLG LB AI

(a) Thevenin equivalent

lR
a

b

LR

LX

AX

rR

AV

AI

The incident wave induces voltage AV at the antenna terminals (measured
when the antenna is open circuited). Conjugate impedance matching is
required between the antenna and the load (the receiver) to achieve maximum
power delivery:

L A l r

L A

R R R R

X X

= = +
= −

(4.44)

For the case of conjugate matching, the following power expressions are found:
a) power delivered to the load

2 2| | | |
8 8

A A
L

L A

V V
P

R R
= = (4.45)

b) power dissipated as heat in the antenna
2

2

| |
8
A l

l
A

V R
P

R
= (4.46)
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c) scattered (re-radiated) power
2

2

| |
8
A r

r
A

V R
P

R
= (4.47)

d) total captured power

( )
2 2| | | |

4 4
A A

c
r l A

V V
P

R R R
= =

+
(4.48)

When conjugate matching is achieved, half of the captured power cP is
delivered to the load (the receiver) and half is dissipated by the antenna
(antenna losses). The antenna losses are heat dissipation lP and reradiated
(scattered) power rP . When the antenna is lossless, only half of the power is
delivered to the load (in the case of conjugate matching), the other half being
scattered back into space.

The antenna input impedance is frequency dependent. Thus, it is matched
to its load in a certain frequency band. It can be influenced by the
proximity of objects, too.

9.4. The radiation efficiency and the antenna losses
The radiation efficiency e takes into account the conductor-dielectric (heat)

losses of the antenna. It is the ratio of the power radiated by the antenna and
the total power delivered to the antenna terminals (in transmitting mode). In
terms of equivalent circuit parameters:

r

r l

R
e

R R
=

+
(4.49)

Some useful formulas to calculate conduction losses will be given below.
a) dc resistance

1
,dc

l
R

Aσ
= Ω (4.50)

σ - specific conductivity, S/m
l – conductor’s length, m
A – conductor’s cross-section, m2

!
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b) high-frequency surface resistance
At high frequencies, the current is confined in a thin layer at the conductor’s

surface, the skin-effect layer. Its effective thickness, known as the skin-depth,
is:

1

f
δ

π σµ
= , m (4.51)

f – frequency, Hz
µ - magnetic permeability, H/m

The surface resistance sR (Ω ) is defined through the tangential electric field
and the collinear surface current density:

s sE R J= ⋅ (4.52)
The surface currents are related to the current volume density J as sJ Jδ= ⋅ .
Then, (4.52) can be written as:

sE R Jδ= ⋅ (4.53)

Since J Eσ= , it follows that
1

sR
δσ

= . Finally,

,s

f
R

π µ
σ

= Ω (4.54)

One can also find a relation between the high-frequency resistance of a
conducting rod of length l and a perimeter P and its surface resistance:

1 1
hf s

l l l
R R

A P Pσ σ δ
= = =

⋅
(4.55)

Here the area A Pδ= ⋅ is not the actual area of the conducting rod, but is the
effective area through which the high-frequency current flows.

δ

P

A
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Example: A half-wavelength dipole is made out of copper ( 75.7 10σ = × S/m).
Determine the radiation efficiency e , if the operating frequency is 100f =
MHz, the radius of the wire is 43 10b λ−= × ⋅ , and the radiation resistance is

73rR = Ω .

810f = Hz 3
c

f
λ⇒ = = m 1.5

2
l

λ
⇒ = = m

42 18 10p bπ π −= = × , m
If the current along the dipole were uniform, the high-frequency loss
power would be uniformly distributed along the dipole, too. However,
the current has a cosine distribution along the half-wavelength dipole:

0

2
( ) cos ,

4 4
I z I z z

π λ λ
λ

 = − ≤ ≤ 
 

Equation (4.55) can be now used to express the high-frequency loss
resistance per wire element of infinitesimal length dz :

0
hf

dz f
dR

p

π µ
σ

=

The high-frequency loss power per wire element of infinitesimal
length dz is then obtained as:

2 0
0

1
2hf

dz f
dP I

p

π µ
σ

= ⋅

The total loss power is obtained by integrating along the whole dipole:
2/ 2

0
0

/ 2

/ 22
20 0

/ 2

/ 22
20 0

/ 2

1 2 1
cos

2

1 2
cos , 2

2

cos
2

hf

l

hf

l

l

hf

l

l

hf

l

R

f
P I z dz

p

I f
P z dz l

p

I l f z z
P d

p l l

π π µ
λ σ

π µ π λ
σ λ

π µ π
σ

−

−

−

  = ⋅    

 = ⋅ ⋅ = ⋅ 
 

     = ⋅ ⋅     
    

∫

∫

∫
���	��
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The effective antenna aperture is the ratio of the available power
at the terminals of the antenna to the power flux density of a plane
wave incident upon the antenna, which is polarization matched to
the antenna. If there is no specific direction chosen, the direction
of maximum radiation intensity is implied.

( )
1/ 22

20

1/ 2

1/ 2

cos ,
2hf hf

I z
P R d

l
πξ ξ ξ

−

= ⋅ ⋅ =∫
���	��


Since the loss resistance lR is defined through the loss power as

2
0

1
2hf lP R I= ,

one obtains that:

00.5 0.5 0.349l hf

l f
R R

P

π µ
σ

= ⋅ = = Ω

The antenna efficiency is:
73

0.9952
73 0.349

r

r l

R
e

R R
= = =

+ +
[dB] 1010log 0.9952 0.02e = = −

10. Effective area (aperture) Ae

A
e

i

P
A

W
= , (4.56)

where:

eA is the effective aperture, m2

AP is the power delivered from the antenna to the load, W

iW is the power flux density (Poynting vector magnitude) of the incident
wave, W/m2
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Using the Thevenin equivalent of a receiving antenna, one can show that
equation (4.56) relates the antenna impedance and its effective aperture:

( ) ( )
2 2

2 2

| | / 2 | |
2

A L A L
e

i i r l L A L

I R V R
A

W W R R R X X
= =

+ + + +
(4.57)

Under conditions of conjugate matching:

( )
2| | 1

8

A L

A
e

i r l

R R

V
A

W R R
=

=
+��	�


(4.58)

For aperture-type antennas, the effective area is smaller than the physical
aperture area. Aperture antennas with constant amplitude and phase
distribution across the aperture have the maximum effective area, which is
practically equal to the geometrical area. The effective aperture of wire
antennas is much larger than the surface of the wire itself. Sometimes, the
aperture efficiency of an antenna is estimated as the ratio of the effective
antenna aperture and its physical area:

e
ap

p

A

A
ε = (4.59)

Example: A uniform plane wave is incident upon a very short dipole. Find the

effective area eA assuming that the radiation resistance is
2

80
l

R
π
λ

 =  
 

, and

that the field is linearly polarized along the axis of the dipole. Compare eA
with the physical surface of the wire, if / 50l λ= and / 300d λ= , where d is
the wire’s diameter.

Since the dipole is very short, one can neglect the conduction losses.
Wire antennas do not have dielectric losses. Therefore, 0lR = . Under
conjugate matching (which is implied unless specified otherwise)

2| |
8

A
e

i r

V
A

W R
=

The dipole is very short and one can assume that the E
G

-field intensity is
the same along the whole wire. Then, the voltage created by the induced
electromotive force of the incident wave is:

| |AV E l= ⋅
G
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The Poynting vector has a magnitude of
2| |

2i

E
W

η
=
G

. Then,

2 2 2
2

2

| | 2 3
0.119

8 | | 8e
r

E l
A

E R

η λ λ
π

⋅ ⋅= = = ⋅
⋅ ⋅

G
G

The physical surface of the dipole is:
2

4 2 6 210 8.7 10
4 36p

d
A

π π λ λ− −= = = × ⋅

The aperture efficiency of this dipole would then be:
4

6

0.119
1.37 10

8.7 10
e

ap
p

A

A
ε −= = = ×

×

11. Relation between the directivity 0D and the effective aperture eA
The simplest derivation of this relation goes through two stages.

Stage 1: Prove that the ratio 0 / eD A is the same for any antenna.
Consider two antennas: A1 and A2. Let, first, A1 be the transmitting

antenna, and A2 be the receiving one. Let the distance between the two
antennas be R. The power density generated by A1 at A2 is:

1 1
1 24

D P
W

Rπ
=

Here, 1P is the total power radiated by A1, and 1D is the directivity of A1.
The power received by A2 and delivered to its load is:

2

2

1 1
1 2 1 24

e
e

D P A
P A W

Rπ→ = ⋅ = ,

where
2eA is the effective area of A2.

2

2 1 2
1

1

4e

P
D A R

P
π →⇒ =

Now, let A1 be the receiving antenna and A2 be the transmitting one. One
can derive the following:

1

2 2 1
2

2

4e

P
D A R

P
π →=
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If 1 2P P= , then, according to the reciprocity principle in electromagnetics♣,

1 2 2 1P P→ →= . Therefore,

2 1

1 2

1 2

1 2

e e

e e

D A D A

D D

A A
γ

=

⇒ = =

γ is the same for every antenna.

Stage 2: Find the ratio 0 / eD Aγ = for an infinitesimal dipole.

The directivity of a very short dipole (infinitesimal dipole) is 0 1.5idD =
(see Examples of Section 4, this Lecture).

The effective aperture of an infinitesimal dipole is 23
8

id
eA λ

π
= (see the

Example of Section 10, this Lecture).

0
2

1.5
8

3e

D

A
γ π

λ
= = ⋅

0
2

4

e

D

A

πγ
λ

= = (4.60)

Equation (4.60) assumes that there are no heat losses in the antenna, no
polarization mismatch and no impedance mismatch with the transmission
lines/load. If those factors are present, then:

( )

( )

2
2 2

0

2
2 2

0

ˆ ˆ1 | | | |
4

ˆ ˆ1 | | | |
4

e w a

e w a

A eD

A G

λρ ρ
π

λρ ρ
π

 
= − Γ ⋅   

 
 

= − Γ ⋅   
 

(4.61)

♣ Reciprocity in antenna theory states that if antenna #1 is a transmitting antenna and antenna #2 is a receiving antenna, then

the ratio of transmitted to received power /tra recP P will not change if antenna #1 becomes the receiving antenna and antenna

#2 becomes the transmitting one.

!


