Lecture5: Polarization and Related Antenna Parameters
(Polarization of EM fields—revision. Polarization vector. Antenna
polarization. Polarization loss factor and polarization efficiency.)

1. Polarization of EM fields.
The polarization of the EM field describes the time variations of the field
vectors at agiven point. In other words, it describes the way the direction and

magnitude the field vectors (usually E) changein time.

The polarization is the figure traced by the extremity of the time-
varying field vector at a given point.

According to the shape of the trace, three types of polarization exist for
harmonic fields: linear, circular and eliptical:

(&) linear polarization  (b) circular polarization  (c) dliptical polarization

Any type of polarization can be represented by two orthogonal linear
polarizations, (E,,E,) or (E,,E,), whosefields are out of phase by an angle
of &, .

e If 6, =0 or nr, then alinear polarization results.

e If 6, =x/2 (90°) and E, = E,, then acircular polarization results.

¢ Inthe most general case, eliptical polarization is defined.



It is also true that any type of polarization can be represented by aright-hand
circular and aleft-hand circular polarizations (E, , Eg).

We shall revise the above statements and definitions, while introducing the new
concept of polarization vector.

2. Field polarization in terms of two orthogonal linearly polarized
components.

The polarization of any field can be represented by a suitable set of two
orthogonal linearly polarized fields. Assume that locally afar field propagates
along the z-axis, and the field vectors have only transverse components. Then,
the set of two orthogonal linearly polarized fields along the x-axis and along
the y-axis, is sufficient to represent any TEM, field. We shall use this
arrangement to demonstrate the idea of polarization vector.

Thefield (time-dependent vector or phasor vector) is decomposed into two
orthogona components:

e=g+8, = E=E+E, (5.1)
= E, cos(at — Bz)X E =EX
é)( X ( ﬁ ) R :> _»X X - (5.2)
& =E, cos(at—-fBz+6, )Y E,=Ee*y
At afixed position (assume z = 0), equation (5.1) can be written as:
é(t) =X-E, cosat + Y- E, cos(at + )
—— E — (5.3)
=|E=%X-E +y-Ee€"*
Casel: Linear polarization: 6, =nz, n=0,12,...
e(t) = X- E, cos(at) + - E, cos(at + nr)
(5.4)

=|E=X-E+¥-E,




y o, =2kr y o, =(2k+)rx
=7>0 =7<0

(@ (b)
Case 2: Circular polarization:

E.=E,=E, and 5L:J_r(%+n7rj, n=012,...

e(t) = X-E, cos(at) + ¥- E, codat + (7 / 2+ )]

= — (5.5)
= |E=E,(X£y-])




E=E,(X+9)

o, =+7 o
2

If (—2) isthe direction of
propagation: clockwise (CW) or
right-hand polarization

If (—2) isthe direction of
propagation: counterclockwise
(CCW) or left-hand polarization




A picture of the field vector (at a particular moment of time) along the
direction of propagation (left-hand circularly polarized wave):




Case 3. Elliptical polarization

The field vector at agiven point traces an ellipse as afunction of time. This
Isthe most general type of polarization of time-harmonic fields, obtained
for any phase difference o and any ratio (E,/E,). Mathematically, the

linear and the circular polarizations are special cases of the dliptical
polarization. In practice, however, the term elliptical polarization is used to
indicate polarizations other than linear or circular.

e(t) =X-E, cosawt + Y- E cos(wt + 9, )

- . 5.6
= E=%E+9y Ee" (50
Show that the trace of the time-dependent vector is an €llipse:
— €,(t) = E, (cosmt - cosd, —sinat-sing, ) ]
2
cosat :ex_(t) and sinat :Jl—iwj
EX EX
2 2
l» sSin®g, = &) -2 e | &M cosJ, + 8
= E, || E "~ | E,
or
1= x*(t) — 2x(t) y(t) cosd, + y*(t), (5.7)
where:
X(t) = 6(t) _ cosat
E.sng,  sind,
t
y(t) = e(t)  cos(wt+d,)

E,sné,  sing,
Equation (5.7) isthe parametric equation of an ellipse centered in the x—y
plane. It describes the motion of a point of coordinates e (t) and e, (t) along

an ellipse with afrequency w.

The elliptical polarization can also be right-hand and |eft-hand polarization,
depending on the relation between the direction of propagation and the
direction of rotation.



The parameters of the polarization ellipse are given below. Their derivation is
givenin Appendix I.
a) major axis (2x0A)

OA = \/E:Ef +E2+ JE} + B} + 2E7E7 cos(2§L)J (5.8)
b) minor axis (2x0B)
1r
OB = \/E_Ef +E2— [E+ E! + 2E7E? cos(2§L)J (5.9)
c) tiltangle 7
1 2E, E
7T =—arctan —0055L (5.10)
2 EZ - Ey
d) axial ratio
AR_ Maor axis _ OA (5.11)

minor axis OB
Note: Thelinear and circular polarizations can be considered as special cases
of the eliptical polarization.

. If 5, :i(%+2nﬁj and E, =E,, then OA=OB=E, = E,; the ellipse

becomes acircle.



e If 6, =nr,then OB=0 and rziarctan[%j; the ellipse collapses into
y
aline.

3. Field polarization in termsof two circularly polarized components

The representation of a complex vector field in terms of circularly polarized
components is somewhat less easy to perceive but it is actually more useful in
the calculation of the polarization ellipse parameters.

E = Ex(%+ J§) + EL(R- }9) (5.12)
Assuming arelative phase difference of - = ¢, — @, one can write (5.12) as:
E = Ex(X+ j9)+ E €% (X- |9) (5.13)

The relation between the linear-component and the circular-component
representations of the field polarization is easily found as:

E=X(Egr+E)+Yi(Er-E) (5.14)
—_—
E E

X y

4. Polarization vector and polarization ratio

The polarization vector isthe normalized phasor of the electric
field vector. It isacomplex-number vector of unit magnitude and
direction coinciding with the direction of the electric field vector.

m

pLinzﬁ-Euy-E—yem, E,, =+/E2+E? (5.15)

The polarization vector takes the following forms in some special cases.
Case 1: Linear polarization

E
ﬁsz-E“_ry-E—y, E, =+ E2+E? (5.16)

Case 2. Circular polarization




L1
pLzﬁ(Xiy-j), E.=v2E =v2E, (5.17)

The polarization ratio isthe ratio of the phasors of the two
orthogonal polarization components. It isacomplex number.

E, Ee*
fL=re’ = EV = VE or fi == (5.18)
X X H

£I'|1

Point of interest: In the case of circular polarization, the polarization retio is
defined as:

fo =reel” :% (5.19)
L

The circular polarization ratio . isof particular interest since the axial ratio of
the polarization ellipse AR can be expressed as:

AR=Tc 1 (5.20)
Besides, itstilt angleis:

Comparing (5.10) and (5.21) readily shows the relation between the phase
difference of the circular-polarization representation and the linear polarization

ratio f, =r, e’ :

1-rf

Oc :arctan( 2 cos§Lj (5.22)

One can calculate r- from the linear polarization ratio f;, making use of (5.11)
and (5.20):

(5.23)

e+1 |1+ r’+ \/1+ r} +2r7 cos(26,)
'c=1 \1+r2— 141 +2r2 cos(26))



Using (5.22) and (5.23) allows easy switching between the representation of
the wave polarization in terms of linear and circular components.

5. Antenna polarization
The polarization of a radiated wave (polarization of a radiating antenna)
at a specific point in the far zone is the polarization of the locally plane wave.
The polarization of a received wave (polarization of a receiving antenna)
isthe polarization of a plane wave, incident from a given direction, and having
given power flux density, which results in maximum available power at the
antenna terminals.

6. Polarization lossfactor and polarization efficiency
Generally, the polarization of the receiving antennais not the same asthe
polarization of the incident wave. Thisis called polarization mismatch.
The polarization loss factor (PLF) characterizes the loss of EM power
because of polarization mismatch.

PLF=| 5 p, (5.24)
The above definition is based on the representation of the incident field and the
antenna polarization by their polarization vectors. If theincident field is
E'= Erin/A)i ’
then the field of the same magnitude that would produce maximum received
power at the antennaterminalsis
Ea = Erln:ba
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PLF=|p, -p,l2=1 PLF = [p,,P,|? = cos?y, PLF=p,-p,12=0
(aligned) (rotated) (orthogonal)

(a) PLF for transmitting and receiving
aperture antennas

X
\ L\

\

\

\
\
\

\
\
\
\

A A
PLF =[P, P, /*= 1 PLF = |p,,+p,l? = cos?y, PLF= [P, P I2=0
(aligned) (rotated) (orthogonal)

If the antenna is polarization matched, then PLF=1, and there is no
polarization power loss. If PLF=0, then the antennais incapable of receiving

the signal.
O<PLF<1 (5.25)

The polarization efficiency has the same physical meaning as the PLF.

Examples

Example 5.1. The electric field of alinearly polarized EM waveis
E' =%-E_(xy)e'”
It isincident upon alinearly polarized antenna whose polarization is:
E,=(%+9) E(r.6.9)
Find the PLF.
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~ 1 . 021
PLF=| X-—=(X+ =—
%N =3

Example 5.2. A transmitting antenna produces a far-zone field, which is
right-circularly polarized. This field impinges upon a receiving antenna,
whose polarization (in transmitting mode) is aso right-circular. Determine
the PLF.

e

Both antennas (the transmitting one and the receiving one) are right-
circularly polarized in transmitting mode. Let’s assume that a transmitting
antenna is located at the center of a spherical coordinate system. The far-
zone field it would produce is described as:
E™ = Em[é-cosa)t + @ - cos(wt —7:/2)]
It is a right-circularly polarized field with respect to the outward radia
direction. Its polarization vector is:

. 60—

TR
According to the definitions in Section 4, this is exactly the polarization
vector of atransmitting antenna.

12



This same field E™ is incident upon a receiving antenna, which has the

polarization vector p, = Z \—/EJ(Pa in its own coordinate system (r,,6.,¢,).

However, this field propagates along —r, in the (r,,6,,¢,) coordinate
system, and, therefore, its polarization vector becomes:

A éa+ 10,

Pi NG

The PLF is calculated as:

Ao
PLF:l ﬁi 'ﬁa |2: |(0a + J(Da)iea J¢a) |
There are no polarization |osses.

=1, PLF 4 =10l0g,,1=0
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Exercise: Show that an antenna of right-circular polarization (in
transmitting mode) cannot receive left-circularly polarized incident wave
(or awave emitted by aleft-circularly polarized antenna).

Appendix |

Find the tilt angle 7, the length of the magjor axis OA, and the length of the
minor axis OB of the ellipse described by the equation:

sin2§:[ex_(t)} _z{ex(t)}{ev(t)}cosé{ey( )} (A-1)
E, E, E, E,

Y fo=aa—

E e.(t)

2
%,
N
\(
\ -
///DC\“(“@
/\%O
\

Equation (A-1) can be wriﬁen as.
a-x*—b-xy+c-y*=1, (A-2)
where:
x=¢,(t) and y=¢,(t) are the coordinates of a point of the ellipse
centered in the x—y plane;
1 .
E’sin’S’
2C0S0
E.E, sin’d’

a=
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1

C=——5—.
E;sin®o
After dividing both sides of (A-2) by (xy), one obtains
X y 1
a——b+c==— A-3
y X xy (A-3)
t
Introducing §=X=ey—(),oneobtainsthat
X g(l)
2 1
X =
cg*~bé+a
1+£°)
208Y = 2 + V2 = X2(1+ £2) = ( )
= PO = Xy =X W) = e (A-4)

Here, p isthe distance of the ellipse point from the center of the coordinate
system. We want to know at what & values the maximum and the minimum
of p occur. Thiswill produce thetilt angle 7. We also want to know what
arethevaluesof p.. and p... Then, we haveto solve

2
d(P°) _g. or
do
g 28910 (A-5)
(A-5) is better solved for the angle «, such that
f:tana:%; 0(2%—2’ (A-6)
Substituting (A-6) in (A-5) yields:
. 2 .
(_aj _zc(ﬂ“_aj_lzo xcos’ @ (A7)
cosa cosa

a-c Ej — Ef
b  2EE,cosé’
The solution of (A-7) is.

where C =
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1 2E,E, coso V4
alzaarctan £Z_ g2 ; 0(2:0(1+E

x -y (A'8)
= T12 =0,

Substituting ¢, and ¢, back in p yields the expressions for OA and OB.

16



