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The polarization is the figure traced by the extremity of the time-
varying field vector at a given point.

Lecture 5: Polarization and Related Antenna Parameters
(Polarization of EM fields – revision. Polarization vector. Antenna
polarization. Polarization loss factor and polarization efficiency.)

1. Polarization of EM fields.
The polarization of the EM field describes the time variations of the field

vectors at a given point. In other words, it describes the way the direction and
magnitude the field vectors (usually E

G
) change in time.

According to the shape of the trace, three types of polarization exist for
harmonic fields: linear, circular and elliptical:
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Any type of polarization can be represented by two orthogonal linear
polarizations, ( ,x yE E� � ) or ( ,H VE E� � ), whose fields are out of phase by an angle

of Lδ .
• If 0Lδ = or nπ , then a linear polarization results.

• If / 2 (90 )Lδ π= D and x yE E= , then a circular polarization results.

• In the most general case, elliptical polarization is defined.

(a) linear polarization (b) circular polarization (c) elliptical polarization
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It is also true that any type of polarization can be represented by a right-hand
circular and a left-hand circular polarizations ( ,L RE E� � ).

We shall revise the above statements and definitions, while introducing the new
concept of polarization vector.

2. Field polarization in terms of two orthogonal linearly polarized
components.
The polarization of any field can be represented by a suitable set of two

orthogonal linearly polarized fields. Assume that locally a far field propagates
along the z-axis, and the field vectors have only transverse components. Then,
the set of two orthogonal linearly polarized fields along the x-axis and along
the y-axis, is sufficient to represent any TEMz field. We shall use this
arrangement to demonstrate the idea of polarization vector.

The field (time-dependent vector or phasor vector) is decomposed into two
orthogonal components:

x y x ye e e E E E= + ⇒ = +
G G GG G G

, (5.1)
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At a fixed position (assume 0z = ), equation (5.1) can be written as:
ˆ ˆ( ) cos cos( )
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G (5.3)

Case 1: Linear polarization: , 0,1,2,L n nδ π= = …
ˆ ˆ( ) cos( ) cos( )
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Case 2: Circular polarization:

and , 0,1,2,
2x y m LE E E n n
πδ π = = = ± + = 
 

…
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G

G (5.5)
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If ( ˆ)z− is the direction of
propagation: clockwise (CW) or
right-hand polarization

If ( ˆ)z− is the direction of
propagation: counterclockwise
(CCW) or left-hand polarization
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A picture of the field vector (at a particular moment of time) along the
direction of propagation (left-hand circularly polarized wave):
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Case 3: Elliptical polarization

The field vector at a given point traces an ellipse as a function of time. This
is the most general type of polarization of time-harmonic fields, obtained
for any phase difference δ and any ratio ( / )x yE E . Mathematically, the

linear and the circular polarizations are special cases of the elliptical
polarization. In practice, however, the term elliptical polarization is used to
indicate polarizations other than linear or circular.

ˆ ˆ( ) cos cos( )

ˆ ˆ L

x y L

j
x y

e t x E t y E t

E x E y E e δ

ω ω δ= ⋅ + ⋅ +

⇒ = ⋅ + ⋅

G
G (5.6)

Show that the trace of the time-dependent vector is an ellipse:
( ) (cos cos sin sin )y y L Le t E t tω δ ω δ= ⋅ − ⋅
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2 ( ) ( )( ) ( )
sin 2 cosy yx x
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e t e te t e t

E E E E
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      
= − +      
       

or
2 21 ( ) 2 ( ) ( )cos ( )Lx t x t y t y tδ= − + , (5.7)

where:
( ) cos
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sin sin
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x L L

e t t
x t
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δ δ

= = ;
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( )

sin sin
y L

y L L

e t t
y t

E

ω δ
δ δ

+= =

Equation (5.7) is the parametric equation of an ellipse centered in the x y−
plane. It describes the motion of a point of coordinates ( )xe t and ( )ye t along

an ellipse with a frequency ω .
The elliptical polarization can also be right-hand and left-hand polarization,

depending on the relation between the direction of propagation and the
direction of rotation.
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The parameters of the polarization ellipse are given below. Their derivation is
given in Appendix I.

a) major axis (2 OA× )

2 2 4 4 2 21
OA = 2 cos(2 )

2 x y x y x y LE E E E E E δ + + + +  (5.8)

b) minor axis (2 OB× )

2 2 4 4 2 21
OB = 2 cos(2 )

2 x y x y x y LE E E E E E δ + − + +  (5.9)

c) tilt angle τ

2 2

21
arctan cos

2
x y

L
x y

E E

E E
τ δ

 
=   − 

(5.10)

d) axial ratio
major axis OA

minor axis OB
AR = = (5.11)

Note: The linear and circular polarizations can be considered as special cases
of the elliptical polarization.

• If 2
2L n
πδ π = ± + 
 

and x yE E= , then OA OB x yE E= = = ; the ellipse

becomes a circle.
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The polarization vector is the normalized phasor of the electric
field vector. It is a complex-number vector of unit magnitude and
direction coinciding with the direction of the electric field vector.

• If L nδ π= , then OB 0= and arctan x

y

E

E
τ

 
= ±  

 
; the ellipse collapses into

a line.

3. Field polarization in terms of two circularly polarized components
The representation of a complex vector field in terms of circularly polarized

components is somewhat less easy to perceive but it is actually more useful in
the calculation of the polarization ellipse parameters.

ˆ ˆ ˆ ˆ( ) ( )R LE E x jy E x jy= + + −
G � � (5.12)

Assuming a relative phase difference of C L Rδ ϕ ϕ= − , one can write (5.12) as:

ˆ ˆ ˆ ˆ( ) ( )Cj
R LE E x jy E e x jyδ= + + −

G
(5.13)

The relation between the linear-component and the circular-component
representations of the field polarization is easily found as:

ˆ ˆ( ) ( )

x y

R L R L

E E

E x E E y j E E= + + −
� �

G � � � �
��	�
 ��	�
 (5.14)

4. Polarization vector and polarization ratio

2 2ˆ ˆ ˆ ,Ly jx
L m x y

m m m

EEE
x y e E E E

E E E
δρ = = ⋅ + ⋅ = +

G
(5.15)

The polarization vector takes the following forms in some special cases:
Case 1: Linear polarization

2 2ˆ ˆ ˆ ,yx
L m x y

m m

EE
x y E E E

E E
ρ = ⋅ ± ⋅ = + (5.16)

Case 2: Circular polarization
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The polarization ratio is the ratio of the phasors of the two
orthogonal polarization components. It is a complex number.

( )1
ˆ ˆ ˆ , 2 2

2
L m x yx y j E E Eρ = ± ⋅ = ⋅ = ⋅ (5.17)

or
L

L

j
y y V

L L L
x x H

E E e E
r r e r

E E E

δ
δ= = = =

� �
� �� � (5.18)

Point of interest: In the case of circular polarization, the polarization ratio is
defined as:

Cj R
C C

L

E
r r e

E
δ= =

�
� � (5.19)

The circular polarization ratio Cr� is of particular interest since the axial ratio of
the polarization ellipse AR can be expressed as:

1

1
C

C

r
AR

r

+=
−

(5.20)

Besides, its tilt angle is:

2
Cδτ = (5.21)

Comparing (5.10) and (5.21) readily shows the relation between the phase
difference of the circular-polarization representation and the linear polarization
ratio Lj

L Lr r e δ=� :

2

2
arctan cos

1
L

C L
L

r

r
δ δ

 
=  − 

(5.22)

One can calculate Cr from the linear polarization ratio Lr� making use of (5.11)
and (5.20):

2 4 2

2 4 2

1 1 2 cos(2 )1

1 1 1 2 cos(2 )

L L L LC

C L L L L

r r rr

r r r r

δ

δ

+ + + ++ =
− + − + +

(5.23)
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Using (5.22) and (5.23) allows easy switching between the representation of
the wave polarization in terms of linear and circular components.

5. Antenna polarization
The polarization of a radiated wave (polarization of a radiating antenna)

at a specific point in the far zone is the polarization of the locally plane wave.
The polarization of a received wave (polarization of a receiving antenna)

is the polarization of a plane wave, incident from a given direction, and having
given power flux density, which results in maximum available power at the
antenna terminals.

6. Polarization loss factor and polarization efficiency
Generally, the polarization of the receiving antenna is not the same as the

polarization of the incident wave. This is called polarization mismatch.
The polarization loss factor (PLF) characterizes the loss of EM power

because of polarization mismatch.

2ˆ ˆPLF | |i aρ ρ= ⋅ (5.24)
The above definition is based on the representation of the incident field and the
antenna polarization by their polarization vectors. If the incident field is

ˆi i
m iE E ρ=

G
,

then the field of the same magnitude that would produce maximum received
power at the antenna terminals is

ˆi
a m aE E ρ=
G

.
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If the antenna is polarization matched, then PLF 1= , and there is no
polarization power loss. If PLF 0= , then the antenna is incapable of receiving
the signal.

0 PLF 1≤ ≤ (5.25)
The polarization efficiency has the same physical meaning as the PLF.

Examples

Example 5.1. The electric field of a linearly polarized EM wave is
ˆ ( , )i j z

mE x E x y e β−= ⋅
G

It is incident upon a linearly polarized antenna whose polarization is:
ˆ ˆ( ) ( , , )aE x y E r θ ϕ= + ⋅

G

Find the PLF.
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2

[dB] 10

1 1
ˆ ˆ ˆPLF | ( ) |

22
PLF 10log 0.5 3

x x y= ⋅ + =

= = −

Example 5.2. A transmitting antenna produces a far-zone field, which is
right-circularly polarized. This field impinges upon a receiving antenna,
whose polarization (in transmitting mode) is also right-circular. Determine
the PLF.

Both antennas (the transmitting one and the receiving one) are right-
circularly polarized in transmitting mode. Let’s assume that a transmitting
antenna is located at the center of a spherical coordinate system. The far-
zone field it would produce is described as:

( )ˆ ˆcos cos / 2far
mE E t tθ ω ϕ ω π = ⋅ + ⋅ − 

G

It is a right-circularly polarized field with respect to the outward radial
direction. Its polarization vector is:

ˆ ˆ
ˆ

2

jθ ϕρ −=

According to the definitions in Section 4, this is exactly the polarization
vector of a transmitting antenna.
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This same field farE
G

is incident upon a receiving antenna, which has the

polarization vector
ˆ ˆ

ˆ
2

a a
a

jθ ϕρ −= in its own coordinate system ( , , )a a ar θ ϕ .

However, this field propagates along ar−G in the ( , , )a a ar θ ϕ coordinate
system, and, therefore, its polarization vector becomes:

ˆ ˆ
ˆ

2
a a

i

jθ ϕρ +=

The PLF is calculated as:
2

2
ˆ ˆˆ ˆ| ( )( ) |

ˆ ˆPLF | | 1
4

a a a a
i a

j jθ ϕ θ ϕρ ρ + −= ⋅ = = , [dB] 10PLF 10log 1 0= =

There are no polarization losses.
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Exercise: Show that an antenna of right-circular polarization (in
transmitting mode) cannot receive left-circularly polarized incident wave
(or a wave emitted by a left-circularly polarized antenna).

Appendix I

Find the tilt angle τ , the length of the major axis OA, and the length of the
minor axis OB of the ellipse described by the equation:

22

2 ( ) ( )( ) ( )
sin 2 cosy yx x

x x y y

e t e te t e t

E E E E
δ δ

      
= − +      
       

( )xe t

( )ye t

majo
r axis (2 OA)

m
inor axis (2

O
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)

τ
xE

yE

E
G

ω

Equation (A-1) can be written as:
2 2 1a x b xy c y⋅ − ⋅ + ⋅ = ,

where:
( )xx e t= and ( )yy e t= are the coordinates of a point of the ellipse

centered in the x y− plane;

2 2

1
sinx

a
E δ

= ;

2

2cos
sinx y

b
E E

δ
δ

= ;

(A-1)

(A-2)
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2 2

1
siny

c
E δ

= .

After dividing both sides of (A-2) by ( )xy , one obtains
1x y

a b c
y x xy

− + =

Introducing
( )

( )
y

x

e ty

x e t
ξ = = , one obtains that

2
2

2
2 2 2 2 2

2

1

(1 )
( ) (1 )

x
c b a

x y x
c b a

ξ ξ
ξρ ξ ξ

ξ ξ

=
− +

+
⇒ = + = + =

− +
Here, ρ is the distance of the ellipse point from the center of the coordinate
system. We want to know at what ξ values the maximum and the minimum
of ρ occur. This will produce the tilt angle τ . We also want to know what
are the values of maxρ and minρ . Then, we have to solve

2( )
0

d

d

ρ
ξ

= , or

2 2( )
1 0

a c

b
ξ ξ−− − =

(A-5) is better solved for the angle α , such that

tan ;
2

y

x

πξ α α τ= = = −

Substituting (A-6) in (A-5) yields:
2

2sin sin
2 1 0 cos

cos cos
C

α α α
α α

   − − = ×   
   

where
2 2

2 cos
y x

x y

E Ea c
C

b E E δ
−−= = .

The solution of (A-7) is:

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)
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1 2 12 2

1,2 1,2

2 cos1
arctan ;

2 2
x y

x y

E E

E E

δ πα α α

τ α

 
= = +  − 

⇒ =
Substituting 1α and 2α back in ρ yields the expressions for OA and OB.

(A-8)


