Lecture8: Linear Wire Antennas— Dipoles and M onopoles

(Small electric dipole antenna. Finite-length dipoles. Half-wavelength
dipole. Method of images - revision. Vertical infinitesimal dipole above
a conducting plane. Monopoles. Horizontal infinitesimal dipole above a
conducting plane.)

The dipole and the monopole are two most widely used antennas for
wireless mobile communication systems. Arrays of dipoles are
commonly used as base-station antennas in land-mobile systems. The
monopol e is perhaps the most common antenna for portable equipment,
such as cellular telephones, cordless tel ephones, automobiles, trains, etc.
It has attractive features such as simple construction, relatively
broadband characteristics, small dimensions at high frequencies. An
alternative to the monopole antennafor hand-held units is the loop
antenna, the microstrip patch antenna, the spiral antennas, and others.

1. Small dipole
7 2 gl (8.1)
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/2 If one assumesthat R=r and condition (8.1)
y4 holds, the maximum phase error in (SR) that
can occur is
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at 6 =0". Reminder: amaximum total phase
error of /8 isacceptable since it does not
—1/2 affect substantially the integral solution for A.
The assumption R=r will be made for both,
the amplitude and the phase factorsin the
kernel of the VP integral.




The current isatriangular function of z':

B (1——'j, 0<2'<1/2
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1(2) =1 (8.2)

1, (1+§), ~1/2<2'<0

TheVP integral Is obtained as:

3. —“ | ( je:Rdz l/fl (1—TjelfRdz} (8.3)

The solution of (8.3) is particularly ssmple when it can be assumed that

R=r:
ipr
A= z—{ﬂlle } (8.4)

2| 4 r
The further away from the antenna the observation point is, the more
accurate the expression in (8.4). Notethat theresult in (8.4) is exactly
one-half of the result obtained for A of an infinitesimal dipole, if |
were the current uniformly distributed along the dipole. Thisisto be

expected because we made the same approximation for R, as in the case
of theinfinitessmal dipole with a constant current distribution, and we

integrated atriangular function along |, whose average is obviously % -

Therefore, we need not repeat al the calculations of the field
components, power and antenna parameters. We shall make use of our
knowledge of theinfinitesimal dipolefield. The far-field components of
the small dipole are ssimply half those of the infinitesimal dipole;
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The normalized field pattern is the same as that of the infinitesimal

dipole: E(0,p)=siné (8.6)
The power pattern: U(8,p)=sin’6 (8.7)
1 ‘ ‘ ‘
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The beam solid angle:

2 7w

Q, = ”sinze-sinededq)
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The directivity:

dr 3
D.=—="=15 8.8
=0 "2 (89)
As expected, the directivity (and the beam solid angle, as well asthe
effective aperture) is the same as those of the infinitesimal dipole,

because the normalized patterns of both dipoles are the same.



The radiated power will be four times less than that of an infinitesimal
dipole because the far fields are twice less:

m. -1z (sz_l (ﬂjz (8.9)
=23 ) 1271 '

As aresult, the radiation resistance is also four times less compared to
that of the infinitessimal dipole:

R=% (D - 207 2@) (8.10)

2. Finite-length infinitesimally thin dipole
A good approximation of the current distribution along the dipole’s
length is the sinusoidal one:

Iosin{ﬂ(lé—z'):, 0<z'<I/2

1 (z") =+ . (8.11)
Iosin{ﬁ(|5+z'j —112<2'<0
It can be shown that the VP integral )
1/2 —j,b’R
A=2-2 | 1(z 8.12
el G (8.12)

—l/2
has an analytical (closed form) solution. Neverthel ess, we shall follow a
standard approach commonly used to calculate the far field. It isbased
on the solution to the infinitesimal dipole field problem. The finite-
length dipoleis subdivided into an infinite number of infinitesimal
dipoles of length dz'. Each infinitesimal dipole produces the elementary

far field described as:
e—J/J’r '
dE, = jnpl.,, o rsm6? dz

- ipr

: e : ,
dH,, = J,Ble(z.)4—msm9-dz (8.13)

dE, = dE, = dH, =dH, =0



Here, |, denotesthe current value of the current element at z'. Using

1 Te(2)
the far-zone approximations:
11

= , for the amplitude factor (8.14)

R=r—-z'cosf, for the phase factor
the following approximation of the elementary far field is obtained:

dE, = jnpl, _;:rr ef7% . gngdz’ (8.15)
Using the superposition principle, the total far field is obtained as:
E,= Hf dE, = mﬁ e .sing- Hf |, €7 dz"  (8.16)
Thefirst factor o _”2
9(8) = jnps _mrsme (8.17)

is called the element factor. The element factor in this caseisthe far
field produced by an infinitesimal dipole of unit current element

| -1 =1 (A-m). The second factor
/2

F(0)= [ Iy, dz (8.18)
-1/2
is called the space factor (or pattern factor, array factor). The pattern
factor is dependent on the amplitude and phase distribution of the current
at the antenna (the source distribution in space).
The element factor iswell known, and is the same for any current

element, provided the angle @ is always associated with the current-
element axis.



For the specific current distribution described by (8.11), the pattern
factor is.

f(0)=1,4 Jq sin[ﬂ(lé+ z'ﬂemz":"s‘gdz'

P (8.19)
+ _[ sin[ﬂ(lé—z'ﬂe”’msedz'}

The above integrals are solved having in mind that

C

jsi n(a+b- x)e”dx = h[csi n(a+bx)—bcos(a+bx)]| (8.20)
Thefar field of the finite-length dipoleis obtained as:

_ipr | cos('BI cosej - cos(ﬁlj_
E,=9(0)- 1(6)= iy : :
27y

siné

(8.21)
E
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The amplitude pattern:
cos(ﬂzI cos@) — cos('gzlj
E(0,9) = (8.22)
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Patterns (in dB) for some dipole lengths | < A:
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The pattern of the dipole | =1.254
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The power pattern:

_ Cos;(ﬂz,I cosej - cos(ﬂzlj_ 2

F0.9)= sing

(8.23)

Note: The maximum of F(6?_, @) isnot necessarily unit3_/, but for | <24
the mgjor maximum isalwaysat 6 =90".

The radiated power
First, the average power flux density is calculated as:

— 2
1 IN; cos(ﬂzlcosej cos(ﬂ I)
P=f-—|E, = 8.24
277| o['= 7787r2r siné (8:24)
The total radiated power is given b)_/ theintegral: )
2r
Hz(ﬂ)ﬁdéz HP-rzsinededgo (8.25)
00
2
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I1= dé (8.26
I sing (8:20)
3
3 issolved in terms of the cosine and the sine integrals:
1.
S=C+In(B)-C (B)+sin(B)[ S(28)-25(B) ]+
2 (8.27)

+%COS(,8I)|:C+I”(,BI)+Ci (281)-2C (A1) ]

Here:
C =0.5772 isthe Euler’ s constant

C(X) = I&;ydy = —I&;ydy Isthe cosine integral



S(x) = jﬂyydy isthe sineintegral .
0
So, the radiated power can be written as.
2
Hzﬂ—llOl -3 (8.28)
A
Radiation resistance:
21 7§
R = =—-3 (8.29)
L[ 2r
Directivity:
D, =4r UIT[aX =47 —- Fie (8.30)
[ [ F(6.9)sinedody
00
where:

_ cos('BzI cosej - cos(ﬂzlj i

F(8,0)= ang IS the power pattern (see (8.23) ).
Finaly, )
D, = % (8.31)

|nput resistance

The radiation resistance given in (8.29) corresponds to the radiated
power but it isnot equal to the input resistance because the current at the
dipole center (if its center isthe feed point) is not necessarily of the
maximum amplitude. If the dipoleislossless, the input power isequal to
the radiated one:

|Iin|2 _|IO|2
TRn_ > R (8.32)

According to the sinusoidal distribution assumed in (8.11), the current at
the center of thedipole (z'=0) is.
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3. Half-wavelength dipole

Thisisaclassical and widely used thin wire antenna: | =%

_ipr cos(” cosej
e 2

27r ' sing@

Radiated power flow density:
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F(8) - normali;ed power pattern

Radiation intensity:

U =r2P:77||°|

cos(” cosej
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F@) - normaliggd power pattern

sn’d (8.36)
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3-D power pattern (not in dB) of the half-wavelength dipole:
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The radiated power of the half-wavelength dipoleis, of course, a

special case of theintegral in (8.26).

,  COS° (ﬂcosej
4r - sn@
|1, P % 1-cosy

[=n dy,
8 -c[ y J
g

S =0.5772+In(27) - C (27) = 2.435
= 1=2435"" |1, [=36.525]|1, [
8r

Radiation resistance

(8.38)

(8.39)

(8.40)
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Directivity

u
D, =47:Um""X =4ﬂﬂ=ﬂ=i=l.643 (8.41)
I1 IT 3 2435
Maximum effective area
2
A="-D,= 0.1312 (8.42)
A
| nput resistance
Sincel =4/2,

The imaginary part of the input impedance is approximately
=+j42.5 Q. To acquire maximum power transfer, this reactance has to
be removed by matching (that is shortening) the dipole:

e thick dipole | =0.474
e thindipole | =0.484

The input impedance of the dipoleisvery frequency sensitive; in
other words, it depends strongly on theratio | / 4. Thisisto be expected
from aresonant structure operating near the resonance, such as the half-
wavelength dipole. It should be also kept in mind that the input
impedance is influenced in a non-negligible way by the capacitance
associated with the physical junction to the transmission line. The
structure used to support the antenna, if any, can also influence the input
impedance. That iswhy the curves that are given below describing the
antenna impedance should be considered just representative of atypical
behaviour.
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Below, measurement results for the input impedance of adipole are
given.

1600

1400

1200

1000 X

aTr[

800

600

400

2001~

Input resistance of dipole antenna

+G. H. Brown, and O. M. Woodward, Jr., “Experimentally Determined Impedance Charac-
teristics of Cylindrical Antennas,” Proc. IRE, vol. 33, 1945, pp. 257-262.

Note the strong influence of the dipole diameter on its resonant
properties.
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One can calculate the input resistance as afunction of |/ 4 using
equations (8.29) and (8.34). These equations, however, are valid only
for infinitesimally thin dipoles. Besides, it isimportant to compute the
exact reactance, too. In practice, dipoles are most often tubular, and they
have some finite diameter d. General-purpose numerical methods (such
as the Method of Momentsor FDTD) are used to calculate the antenna
impedance. When finite-thickness wire antennas are to be analyzed and
no assumption is made for the current distribution along the wire, the
MoM is applied to the classical Pocklington’s equation or to its variation,
the Hallen’s equation. A classical method producing closed form
solutions for the self-impedance and the mutual impedance of straight-
wire antennas is the induced emf method, which will be discussed later.
The induced emf method does assume sinusoidal current distribution.
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4. Method of images—revision

A J M,

Ji - Mi* —
+ 1

J-? —> I\/Io* —>p
° J, M,

7

magnetic (I\:/Ionductof
I i i
J v Fatale Mi* <



5. Vertical electric current element above perfect conductor

actual source

h

7 7
h 6, /// r, conauctor
\S’/
image sourceé 7

Thefield at the observation point P is a superposition of the fields of the
actual source and the image source, both radiating in a homogeneous
medium of constitutive parameters (¢, 4,). The actual sourceisa
current element (1,al) (infinitessimal dipole).

e—jﬂrl

ES = i7B(1,al) S— sing,
4rr,
e_jﬂrZ (8.44)
E£=J'77,5(|0A|)4 -sing,
v,

Expressing the distances |1; | and |T, | interms of || and h (using the
cosine theorem) gives:

r,=r2+h?—2rhcos@

r,= \/rz +h?—2rhcos(x —6)
We shall use the binomial expansion of r, and r, to obtain

approximations of the amplitude and the phase terms, which would
simplify the evaluation of the total far field and the VP integral.

(8.45)
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For the amplitude term:

1 1 1

Lor, T
For the phase term, we shall use a second order approximation (see also
the geometrical interpretation below).

I, =r—hcosé

(8.46)

(8.47)
r, =r+hcosé
y4
A
O = oo
/ 1
X 2hcosé
Thetotal far field is:
E,=El+E (8.48)

E9 — Jﬂﬂ (IOAI) .Sine[e—lﬂ(r—hcose) n e—j/i(r+hcos€)_ (849)
Ay

Cifr
E, = m’B(IOAl)im sing-| 2cos( fhcosd) |, 220
o iy LS P ! (8.50)

9(0)

E, =0 , z<0

Again, it should be noted that the far field expression can be
decomposed into two factors: the field of the elementary source g(&)

and the pattern factor (also array factor) f (6).
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The normalized power patternis:
F(6) =[sing-cos(fh cos¢9)]2 (8.51)

Relative power
(dB down)

900 o ’/ s

Elevation plane patterns of avertical infinitesimal electric dipole for
different height above a perfectly conducting plane.
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Asthe vertical dipole is moved further away from the infinite conducting
(ground) plane, more and more lobes are introduced in the power pattern.
This effect is called scalloping of the pattern. The number of lobesis

n:nint(z—h+1j
A

Relative power
(dB down)
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Total radiated power

_ 1 2nmwl2 y
n=§[;f>Pd§=2—ﬂ£ '([|E9| r2sin6dodg
7l2
== [, [ r’snode (8.52)
Mm%

zl2

T =78%(1,4l)? j sin”@-cos’( Shcosd)do
0

2 .

- :””(Mj l_cos(Zﬁ?)Jrsn(Z,B?) (853)
A 3 (2ph) (24h)

e As h— 0, theradiated power of the vertical dipole approaches

twice the value of the radiated power of adipole of the same length
in free space.
e As fh— «, theradiated power of both dipoles becomes the same.

Radiation resistance

R = 2 =2m7(A—'j F_cos(Z,b’h)Jrsin(Z,Bh)} 654

IN; A)13 (2ph)°  (2p0)
e As h— 0, theradiation resistance of the vertical dipole

approaches twice the value of the radiation resistance of a dipole of
the same length in free space:

=2 RE, fh=0 (8.55)

e As fh— o, theradiation resistance of both dipoles becomes the
same.
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Radiation intensity
IE,P (1)
U=r°P=r?>2 :—(0—) sin®@cos’(fhcosd)  (8.56)
2n 2\ A
The maximum of U (@) occursat 8 = /2 (except for fh — «):
| Al

Ui
U, =—= 8.57
Thisvalueis 4 times greater than U ., of afree-space dipole.

Maximum directivity

D :47:Um""X = 2
° M 1_cos(2ph) sin(2h)
3 (28n) (28N
If fh=0, D, =3, which istwice the max. directivity of afree-space
current element (D" =1.5) The maximum of D, occurs when

ph=2.881 (h=0.45851). Then, D, = 6.566, ;, ;-

(8.58)

Relative power
(dB down)

h=0.4585A
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6. Monopoles

A monopoleis adipole that has been divided into half at its center
feed point and fed against aground plane. Itisnormally A/4 long (a
guarter-wavelength monopole), but it might by shorter when space
restrictions dictate shorter lengths. Then, the monopole is asmall
monopole whose counterpart is the small dipole (see Section 1, this
Lecture). Itscurrent has linear distribution with its maximum at the feed
point, and its null at the monopol€e’s edge.

The vertical monopoleis extensively used for AM broadcasting
(=500 to 1500 kHz, 4=200 to 600 m), because it is the shortest most
efficient antenna at these frequencies, as well as because vertically
polarized waves suffer less attenuation at close to the ground
propagation. Vertical monopoles are widely used as base-station
antennas in mobile communications, too.

Monopoles at base stations and radiobroadcast stations are supported
by suitable towers and guy wires. The guy wires must be separated into
short enough (< A/8) pieces, which are insulated from each other to
suppress any parasitic currents. Special careistaken for proper
grounding of the monopole. Usually multiple radial wire rods, each
0.25-0.354 long, are buried at the monopole base in the ground to
simulate perfect ground plane, so that the pattern approximates closely
the theoretical one, i.e. the pattern of the A/2-dipole. Lossesin the
ground plane cause undesirable deformation of the pattern as shown
below for an infinitesimal dipole above an imperfect ground plane.

1
Relative power
(dB down)
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Monopole fed against a Practical monopole with radial
large solid ground plane wires to simulate perfect ground

Several important conclusions follow from the image theory and the
discussion in Section 5.

Thefield distribution in the upper half-space is the same as that of
the respective free-space dipole
The currents and the charges on a monopole are the same as on the
upper half of its dipole counterpart, but the terminal voltage is only
half that of the dipole. The input impedance of amonopoleis
therefore only half that of the respective dipole:

1

Zirr?|D = E Zi(:]p (8'59)

(Seeaso (8.55).)

The total radiated power of a monopole is half the power radiated
by its dipole counterpart, since it radiates in half-space (but itsfield
isthe same). Asaresult, the beam solid angle of the monopoleis
half that of the respective dipole and its directivity istwice the
directivity of the dipole.

DiP=— = =2DS? (8.60)
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The quarter-wavel ength monopole

Thisisastraight wire of length | = A/4 mounted over aground
plane. From the discussion above, it can be expected that the quarter-
wavel ength monopol e should be very similar to the half-wavelength
dipole in the hemisphere above the ground plane.

e |tsradiation pattern is the same as that of afree-space A/2-dipole,

only that it isnon-zero only for 0° <8 <90° (above ground).

e Thefield expressions are the same as those of the A/2-dipole.

e The radiated power of the A/4-monopole is half that of the A/2-

dipole.

e Theradiation resistance of the A/4-monopoleis half that of the

Al2-dipole: Z® =0.5Z% =0.5(73+ j42.5) =36.5+ j21.25, Q.

e Thedirectivity of the A/4-monopoleis:

Dy® =2DP = 2.1.643=3.286

Some approximate formulas for rapid cal culations of the input resistance
of adipole and the respective monopole:

G=ﬁ=72'|z, for dipole
Let |
G=,BI=27zz, for monopole
Then,
e if0<G<”
4

R.=20G* ,dipole
R.=10G* ,monopole
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o it 5 <G<7
) 2
R =247G* dipole
R, =12.35G** ,monopole
o |f T CGeo
2

Rn = 11.1464'17 ,deOIe
R =557G*" ,monopole

7. Horizontal current element above a perfectly conducting plane

The analysisis analogous to that of avertical current element above a
ground plane. The difference arises in the element factor g(&) because
of the horizontal orientation of the current element. Let’s assume that
the current element is oriented along the y-axis, and the angle between
and the dipole’ s axis (y-axis) is .
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E(P)=E“(P)+E'(P) (8.61)
—Jﬁrl
E, = jnA(l AI)

siny (8.62)

l
—Jﬁrz

E, =—inB(l AI) sm// (8.63)

One can express the angle i in terms of (H,go).
cosy =Y-f=y-(Xsindcosp+ ysindsing + 2coso)
= COSy =sSindsing
(8.64)

— siny = 1-sin?#sin’ g
The far-field approximations are:
111

I’1 r, I’

, for the amplitude term

r,=r —hcosé
r, =r+hcosé@

Substituting the far-field approximations and equations (8.62), (8.63),
(8.64) in the total field expression (8.61) yields:

} for the phase term

E,(0.0)= 177,3 )] (8.65)

element factor g(0.¢) aray factor f(6,9)
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The normalized pattern
F(6,9) =(1-sin’#sin? p)-sin?( fhcosb) (8.66)

e “—+‘*’ 0
=90
» 0
Relativ

0
e
d
<
1

90° L~ ——— 7 7777 7 90°
— h =0 (free-space) h=3A/8
———=h=A/8 ———h=AR
........ h=21/4 veemeene B= 2

As the height increases beyond a wavelength (h > A), scalloping appears
with the number of lobes being:

n=ni nt(z%) (8.67)
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Following a procedure similar to that of the vertical dipole, the radiated
power and the radiation resistance of the horizontal dipole can be found.

:%n(%f{%—gg@ﬁh) ~ cos(Z,B?) +sin(2,621)} (8.69)
Sh (24h) (24h)

\ R(AN) J

R =[] -R(gN (569

By expanding the sine and the cosine functions into series, it can be
shown that for small values of (Sh) the following approximation holds:

3272 hY
Rfﬁhﬁo:—w (Ej (8.70)

Itisalsoobviousthat if h=0,then R =0 and IT=0. Thisisto be
expected because the dipole is short-circuited by the ground plane.

Radiation intensity

r2 = 2 U(IOAI )2 . 2 . 2 . 2
U=—|E |'=-| 22— | (1-sin“@9n sin hcosé 8.71
The maximum value of (8.71) depends on whether (4h) islessthan

|2 or greater:
T A
If ph<= | h<=
s 2( 4)

| ALY .
U, . :%(07) sin“(ph) (8.72)
T A
o If fh>—= | h>=
ph> 5 ( >4)
| al'Y
U mex — g(OTA) / 6:arcco{2;§hj,go=0° (873)

Maximum directivity

__(sn(sh)Y
For small Sh, D0—7.5( s j
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