
1

LECTURE 9: Cylindrical Antennas – Classical Theoretical Models
(Reciprocity theorem. Self-impedance of a dipole using the induced emf
method. Pocklington’s equation. Hallén’s equation.)

1. Reciprocity theorem for antennas

1.1. Reciprocity theorem in circuit theory
If a voltage (current) generator is placed between any pair of nodes of a

linear circuit, and a current (voltage) reaction is measured between any
other pair of nodes, the interchange of the generator’s and the
measurement’s locations would lead to the same measurements results.
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1.2. Reciprocity theorem in EM field theory (Lorentz’ reciprocity
theorem)
Consider a volume [ ]SV bounded by the surface S, where two pairs of

sources exist: 1 1( , )J M
G G

and 2 2( , )J M
G G

. We shall denote the fields associated

with the 1 1( , )J M
G G

sources as 1 1( , )E H
G G

, and the fields generated by 2 2( , )J M
G G

as 2 2( , )E H
G G

.
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The vector identity

1 2 2 1 2 1 1 2 1 2 2 1( )E H E H H E E H H E E H∇ ⋅ × − × = ⋅∇× − ⋅∇× − ⋅∇× + ⋅∇×
G G G G G G G G G G G G

is used to obtain:

1 2 2 1 1 2 1 2 2 1 2 1( )E H E H E J H M E J H M∇⋅ × − × = − ⋅ + ⋅ + ⋅ − ⋅
G G G G G G G G G G G G

(9.4)
Equation (9.4) can be written in its integral form as:

[ ]

1 2 2 1 1 2 1 2 2 1 2 1( ) ( )
SS V

E H E H ds E J H M E J H M dv× − × = − ⋅ + ⋅ + ⋅ − ⋅∫∫ ∫∫∫
G G G G G G G G G G G GGw (9.5)

Equations (9.4) and (9.5) represent the general form of the Lorentz’
reciprocity theorem in differential and in integral form, respectively.

One special case of the reciprocity theorem is of fundamental
importance to antenna theory, namely its application to unbounded (open)
problems. In this case, the surface S is of infinite radius. Therefore, the
fields integrated over the surface S are far-zone fields, which means that
the left-hand side of (9.5) vanishes:

1 2 1 2
1 2 2 1

| || | | || |
( ) cos cos 0

S S

E E E E
E H E H ds dsγ γ

η η
 

× − × = − = 
 

∫∫ ∫∫
G G G GG G G G G Gw w (9.6)

Here, γ is the angle between the polarization vectors of both fields, 1E
G

and

2E
G

. It follows that in the case of open problems the reciprocity theorem
reduces to:

[ ] [ ]

1 2 1 2 2 1 2 1( ) ( )
S SV V

E J H M dv E J H M dv⋅ − ⋅ = ⋅ − ⋅∫∫∫ ∫∫∫
G G G G G G G G

(9.7)

Each of the integrals in (9.7) can be interpreted as coupling energy between
the field produced by some sources and another set of sources, which
generate another field. The quantity

[ ]

1 2 1 21,2 ( )
SV

E J H M dv= ⋅ − ⋅∫∫∫
G G G G
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is called reaction of the field 1 1( , )E H
G G

to the sources 2 2( , )J M
G G

. Similarly,
the quantity

[ ]

2 1 2 12,1 ( )
SV

E J H M dv= ⋅ − ⋅∫∫∫
G G G G

is the reaction of the field 2 2( , )E H
G G

to the sources 1 1( , )J M
G G

. Equation (9.7)
can be briefly written as

1,2 2,1= (9.8)

The Lorentz’ reciprocity theorem is the most general form of reciprocity in
linear electromagnetic systems. Circuit theory reciprocity is a special case
of lumped element sources and reaction (local voltage or current
measurements). To illustrate the above statement, consider the following
experiment:

MEASUREMENT 1

1 1( , )E H
G G

(1)
mV

measurement region

(1)
sV

1 1( , )J M
G G

source region

MEASUREMENT 2

2 2( , )E H
G G

(2)
mV

measurement region

(2)
sV

2 2( , )J M
G G

source region
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Assume that the sources for both measurements have identical local
amplitude-phase distribution; that is: (1) (2)

s s sV V V= = , and 1 2J J=
G G

, 1 2M M=
G G

everywhere in the source volume. Assume also that the measurements in
both cases are carried out in a volume of the same shape and dimensions

(1) (2)
m m mV V V= = . According to (9.7)

[ ] [ ]

1 1 2 2( ) ( )
S SV V

E J H M dv E J H M dv⋅ − ⋅ = ⋅ − ⋅∫∫∫ ∫∫∫
G G G G G G G G

(9.9)

1 2E E⇒ =
G G

and 1 2H H=
G G

. Reaction (measurement data) is insensitive to the
interchange of source and measurement locations. This is the same
principle that was postulated as reciprocity in circuit theory (see Section
1.1). Only that we consider volumes instead of nodes, and field vectors
instead of voltages and currents.

The general reciprocity theorem can be postulated also as: any network
constructed of linear isotropic matter has a symmetrical impedance matrix.
This “network” can be two antennas and the space between them.

1.3. Reciprocity in antenna theory
According to the reciprocity theorem, if antenna #1 is a transmitting

antenna and antenna #2 is the receiving one, the ratio of transmitted to
received power /t rP P will not change if antenna #1 becomes the receiving
antenna and antenna #2 becomes the transmitting one. It should be
reiterated that the reciprocity theorem holds only if the whole system
(antennas + propagation environment) is isotropic and linear.

Let us assume that antennas #1 and #2 are matched to their feed
networks. Then the power fed to antenna #1 (the transmitting one) will be:

1

2

1

| |

8
g

A

V
P

R
= , (9.10)

where { }
1 1 1 1

ReA A r lR Z R R= = + is the resistance of antenna #1. If the

transfer admittance of the combined network consisting of antenna #1, free
space and antenna #2, is 21Y , then the current at the antenna #2 load is

21( )gV Y . The power delivered to the load is:
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2 2

2 2 2 2
2 21 21

1 1
| | | | | | | |

2 2A g L gP R V Y R V Y= = (9.11)

1 2

22
21

1

4 | |r
A A

t

P P
R R Y

P P
⇒ = = (9.12)

In a similar manner, it can be shown that the ratio /r tP P when antenna
#2 transmits and antenna #1 receives, is:

1 2

21
12

2

4 | |r
A A

t

P P
R R Y

P P
= = (9.13)

Since 21 12Y Y= , it follows that the ratio of received to transmitted power
does not change if the antennas interchange receiving with transmitting
mode.

Reciprocity of the radiation pattern
The radiation pattern is the same in receiving and in transmitting

modes if the materials used for the construction of the antenna and the
transmission lines are linear and the medium of wave propagation is linear.
Nonlinear devices such as diodes and transistors make the antenna system
nonlinear, therefore, nonreciprocal.

The two-port model of a measurement system is:

1 11 1 12 2

2 21 1 22 2

V Z I Z I

V Z I Z I

= +
= +

(9.14)

Here:

11Z - self-impedance of antenna #1

22Z - self-impedance of antenna #2

12 21,Z Z - mutual impedances.
The field pattern is measured as the open-circuit voltage of the receiving
antenna. If antenna #1 transmits, then the voltage

2 221 1 / 0oc IV Z I == (9.15)

is measured. If antenna #2 transmits, then the voltage

1 112 2 / 0oc IV Z I == (9.16)

is measured. The excitation currents 1I and 2I do not depend on the
direction and cannot influence the shape of the pattern ( , )ocV θ ϕ . The
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pattern depends only on the mutual impedance associated with a given
direction 12 21( , ) ( , )Z Zθ ϕ θ ϕ= . It is now obvious that the pattern would not
depend on whether the antenna under test receives and the probe antenna
transmits, or vice versa. It also does not matter whether the antenna under
test rotates and the probe antenna is stationary, or vice versa.

test antenna
(stationary)

probe antenna
(rotating)

test antenna
(rotating)

probe antenna
(stationary)
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2. Self impedance of a dipole using the induced emf method
The induced emf method was developed by Carter1 in 1932, when

powerful computers were not available and analytical (closed-form)
solutions were very much needed to calculate the self-impedance of wire
antennas. The method was later extended to calculate mutual impedances
of multiple wires. The emf method is restricted to straight parallel wires.

Measurements indicate that the current distribution on thin dipoles is
nearly sinusoidal (except at the current minima). The induced emf method
assumes this type of idealized distribution. It results in satisfactory
accuracy for dipoles with length-diameter ratios as small as 100, provided
the terminals are at the current maximum.

Let’s assume that the feed is at the current maximum mI . Using the
reciprocity principle one can show that

/ 2

/ 2

( , ) ( , )
l

m m z z

l

V I I a z z E a z z dzρ ρ
−

′ ′ ′= − = = = =∫ (9.17)

1 P.S. Carter, “Circuit relations in radiating systems and applications to antenna problems,” Proc. IRE, 20, pp.1004-
1041, June 1932.
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mV is the voltage applied at the antenna feed.
( , )zI zρ is the resulting current at the wire. zI

produces the field ( , )zE zρ , which can be calculated

using the VP A
G

, as if there were no conductor
backing the currents. It is not zero at the conducting
surface of the wire, which implies the existence of
an induced field

izE such that
iz zE E= − . The

induced field
izE would produce the current Im at the

antenna input.
The input (self) impedance of the antenna is:

m
m

m

V
Z

I
= (9.18)

It follows that:
/ 2

2
/ 2

1
( , ) ( , )

l

m z z
m l

Z I a z z E a z z dz
I

ρ ρ
−

′ ′ ′= − = = = =∫ (9.19)

Note that in (9.17) and in (9.19) it is assumed that currents are concentrated
at the wire’s surface (which is practically true for all copper and aluminum
dipoles), and that the currents and the resulting zE field are not dependent
on the angle ϕ . The latter assumption is only true for thin wires, as
mentioned above. Another assumption made is that the current distribution
along the wire induced by the applied voltage mV is sinusoidal:

sin , 0 / 2
2

( )

sin , / 2 0
2

m

m

l
I z z l

I z
l

I z l z

β

β

   ′ ′− ≤ ≤      ′ = 
   ′ ′+ − ≤ ≤     

(9.20)

So far, we have obtained only the far-field components of the field
generated by the current in (9.20) (see Lecture 6). However, when the
input resistance and reactance are to be found, the total near fields have to
be known. In our case, we are particularly interested in zE , which is the
field produced by ( )I z′ as if there is no conductor surface present. We
shall use cylindrical coordinates ( , , )zρ ϕ to describe the location of the

a

dz′
szJ adϕ

z

y

x ϕ
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integration and the observation points. The electric field can be expressed
in terms of the VP A

G
and the scalar potential φ (see Lecture 2).

E j Aφ ω= −∇ −
GG

(9.21)

z zE j A
z

φ ω∂
⇒ = − −

∂
(9.22)

The VP A
G

is the superposition of the retarded current potentials:
/ 2

/ 2

( , )
4

l j R

z

l

e
A I a z z dz

R

βµ ρ
π

−

−

′ ′= = =∫
G

(9.23)

The scalar potential is the superposition of the retarded charge potentials:
/ 2

/ 2

1
( , )

4

l j R

l

l

e
q a z z dz

R

β

φ ρ
πε

−

−

′ ′= = =∫ (9.24)

Here, lq stands for linear charge density (C/m). Knowing that the current
depends only on z , the continuity relation is written as:

z
l

I
j q

z
ω ∂= −

′∂
(9.25)

cos , 0 / 2
2

( )

cos , / 2 0
2

m

l

m

I l
j z z l

c
q z

I l
j z l z

c

β

β

   ′ ′− − ≤ ≤      ′⇒ = 
   ′ ′+ + − ≤ ≤     

(9.26)

where /c ω β= is the speed of light. Now, we can write the expressions

for A
G

and φ .

0 / 2

/ 2 0

sin sin
4 2 2

lj R j R

z m

l

l e l e
A I z dz z dz

R R

β βµ β β
π

− −

−

       ′ ′ ′ ′= + + −              
∫ ∫ (9.27)

0 / 2

/ 2 0

cos cos
4 2 2

lj R j R
m

l

I l e l e
j z dz z dz

R R

β βηφ β β
π

− −

−

       ′ ′ ′ ′= − + + −              
∫ ∫ (9.28)

Here, /η µ ε= is the intrinsic impedance of the medium ( 120π≈ Ω in
vacuum).
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The distance between integration and observation point is assumed:
2 2( )R z zρ ′= + − , (9.29)

which is actually an approximation of:
2 2( ) ( )R a z zρ ′= − + − (9.30)

x

y

z

dz′

( , , )P zρ ϕ

R
G

1R

2R

r
G

ρϕ

Equation (9.29) is substituted in (9.27) and (9.28). The resulting equations
for A

G
and φ are modified making use of Moivre’s formulas:

( )

( )

1
cos

2
1

sin
2

jx jx

jx jx

x e e

x e e
j

−

−

= +

= −
(9.31)

Then, the equations of A
G

and φ are substituted in (9.22) to derive the
expression for zE . This is a rather lengthy derivation, and we shall give
the final result only:

1 2

1 2

2cos
4 2

j R j R j r
m

z

I e e l e
E j

R R r

β β βη β
π

− − −  = − + −   
  

(9.32)
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The final goal of this discussion is to find the self-impedance (9.19) of
the dipole. Equation (9.19) can be written as:

/ 2

/ 2

1
sin | | ( , )

2

l

m z
m l

l
Z z E a z z dz

I
β ρ

−

  ′ ′ ′= − − = =    
∫ (9.33)

Substituting (9.33) in (9.32) produces the following results for the real and
the imaginary part of inZ :

[ ]

[ ]

1
ln( ) ( ) sin( ) (2 ) 2 ( )

2 2
1

cos( ) ln( / 2) (2 ) 2 ( )
2

{

}

m r i i i

i i

R R C l C l l S l S l

l C l C l C l

η β β β β β
π

β β β β

= = + − + − +

+ + + −
(9.34)

[ ]
2

2 ( ) cos( ) (2 ) 2 ( )
4

2
sin( ) (2 ) 2 ( )

{

}

m i i i

i i i

X S l l S l S l

a
l C l C l C

l

η β β β β
π

ββ β β

= − − +

  
+ − +   

  

(9.35)

The equations above refer to a feed point, which coincides with the
maximum of the current distribution. The dipole is normally fed at the
center. However, the current has its maximum at the center only if

( )2 1 , 0,1,
2

l k k
λ= + = … (9.36)

If the length of the antenna is other than that in (9.36), the input impedance
will differ from that in (9.34) and (9.35). The relation between the input
resistance at the maximum-current point and the resistance at the centered-
feed point for any dipole length was already found in Lecture 6 (see
equation 6.34). The same relation holds for the reactances, too:

2

2sin
2

m r
in r

in

I R
R R

lI β
 

= =      
 

(9.37)
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2

2sin
2

m m
in m

in

I X
X X

lI β
 

= =      
 

(9.38)

For a small dipole, the input reactance can be approximated by:
[ ]ln( / ) 1

120
tan( )in m

l a
X X

lβ
−

= −� (9.39)

The results produced by (9.37) and (9.38) for different ratios /l λ are given
in the plots below.
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Reactance of a thin dipole (emf method) for different wire radii a :

Note that:
• the reactance does not depend on the radius a , when the dipole

length is a multiple of a half-wavelength ( / 2l nλ= ), as follows from
(9.35);

• the resistance does not depend on a according to the assumptions
made in the emf method (see equation (9.34)).
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3. Pocklington’s equation
The assumption of a sinusoidal current distribution along the dipole is

considered accurate enough for wire diameters 0.05d λ< . Generally
speaking, the current distribution is not sinusoidal in the case of thicker
wires. The currents must be computed using some general numerical
approach. Below, we shall introduce two integral equations, which can
produce the current distribution on any wire antenna of finite diameter.
These equations are classics in wire antenna theory. We shall not discuss
in detail their numerical solution, which is somewhat beyond the subject of
this course.

To derive Pocklington’s equation, the concepts of incident and scattered
field will be introduced first.

The incident wave is a wave produced
by some sources. This wave would
exist in the location of the scatterer, if
the scatterer were not present. The
scatterer though is present, and if it is
a conducting body, it would require
the vanishing of the electric field
components tangential to its surface

0tEτ =
G

(9.40)

The vector tE
G

denotes the so-called
total electric field. This means that as
the non-zero incident field impinges
upon the conducting scatterer, it
induces on its surface currents sJ

G
,

which in their turn produce a field, the
scattered field sE

G
. The scattered and

the incident fields superimpose to
form the total field:

t i iE E E= +
G G G

(9.41)
The scattered field is such that (9.40) is fulfilled, i.e.

s iE Eτ τ= −
G G

(9.42)

z

y

x

2a

ϕ

2

l

2

l

iE
G

sE
G
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Any irradiated object presenting a discontinuity in the wave’s propagation
path is a scatterer, and so is any receiving antenna. However, the above
concepts hold for transmitting antennas, too. In the case of a wire dipole,
the incident field exists only at the base of the dipole (in its feed gap).

In the case of cylindrical dipoles with excitation of cylindrical
symmetry, the E

G
field has no ϕ -component. The only tangential

component is the z one. The boundary condition at the dipole’s surface is:

/ ,
2 2

s i
l lz z a zE E ρ= − < <= − (9.43)

The scattered field can be expressed in terms of A
G

and φ , as it was already
done in (9.22):

2

2

1s z
z z z

A
E j A j j A

z z

φ ω ω
ωµε

∂ ∂= − − = − −
∂ ∂

(9.44)

or
2

2
2

1s z
z z

A
E j A

z
β

ωµε
 ∂= − + ∂ 

(9.45)

We assume only z -components of the surface currents and no edge effects:
/ 2 2

/ 2 0

( , , )
4

l j R

z z

l ds

e
A z J ad dz

R

π βµρ ϕ ϕ
π

−

−

′ ′= ∫ ∫ ��	�
 (9.46)

If the cylindrical symmetry of the dipole and the excitation are preserved,
the current zJ does not depend on the azimuthal angle ϕ . It can be shown
that the field created by a cylindrical sheet of surface currents zJ is
equivalent to the field created by a current filament of current zI :

1
2 ( ) ( )

2z z z zaJ I J z I z
a

π
π

′ ′= ⇒ = (9.47)

Then, (9.46) reduces to:
/ 2 2

/ 2 0

1
( , , ) ( )

4 2

l j R

z z

l

e
A z I z ad dz

a R

π βµρ ϕ ϕ
π π

−

−

′ ′ ′= ∫ ∫ (9.48)
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The distance between observation and integration points is:
2 2 2

2 2 2

( ) ( ) ( )

2 cos( ) ( )

R x x y y z z

a a z zρ ρ ϕ ϕ

′ ′ ′= − + − + − =

′ ′= + − − + −
(9.49)

The cylindrical geometry of the problem implies the cylindrical symmetry
of the observed fields, i.e. A

G
does not depend on ϕ and one can assume

that 0ϕ = . Besides, we are interested in the scattered field produced by
this equivalent current at the dipole’s surface, i.e. the observation point is
at aρ = . Then,

( )
/ 2 2 / 2

/ 2 0 / 2

1
( ,0, ) ( ) ( ) ,

2 4

l lj R

z z z

l l

e
A a z I z d dz I z G z z dz

R

π β

µ ϕ µ
π π

−

− −

 
′ ′ ′ ′ ′ ′= = 
 

∫ ∫ ∫ , (9.50)

where

( )
2

0

1
,

2 4

j Re
G z z d

R

π β

ϕ
π π

−

′ ′= ∫ (9.51)

2 2 2
( , 0) 4 sin ( )

2aR a z zρ ϕ
ϕ

= =
′  ′= + − 

 
(9.52)

Substituting (9.50) in (9.45) yields:
/ 22

2
2

/ 2

1
( ) ( ) ( , )

l
s
z z

l

d
E a j I z G z z dz

dz
ρ β

ωε −

  ′ ′ ′= = − + 
 

∫ (9.53)

Imposing the boundary condition (9.43) on the field in (9.53) leads to:
/ 22

2
2

/ 2

( ) ( , ) ( )
l

i
z z

l

d
I z G z z dz j E a

dz
β ωε ρ

−

  ′ ′ ′+ = − = 
 

∫ (9.54)

Since zI is the source, which does not depend on z , (9.54) can be rewritten
as:

/ 2 2
2

2
/ 2

( , )
( ) ( , ) ( )

l
i

z z

l

d G z z
I z G z z dz j E a

dz
β ωε ρ

−

′ ′ ′ ′+ = − = 
 

∫ (9.55)

Equation (9.55) is called Pocklington’s2 integro-differential equation. It is
used to compute the equivalent filamentary current distribution ( )zI z′ by
knowing the incident field on the dipole’s surface.

2 H.C. Pocklington, “Electrical oscillation in wires”, Camb. Phil. Soc. Proc., 9, 1897, pp.324-332.
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When the gap of length b is the only place where i
zE exists, equation

(9.55) is written as:

/ 2 2
2

2
/ 2

,
( , ) 2 2( ) ( , )

0, | |
2 2

i
l z

z

l

b b
j E z

d G z z
I z G z z dz

b ldz
z

ωε
β

−

− − < <′  ′ ′ ′+ =  
   < <



∫ (9.56)

If one assumes that the wire is very thin, then the Green’s function
( , )G z z′ simplifies to:

( )
2

0

1
,

2 4 4

j R j Re e
G z z d

R R

π β β

ϕ
π π π

− −

′ ′= =∫ , (9.57)

since R reduces to 2 2 2
( 0) 4 sin ( )

2aR a z z z zρ
ϕ

= →
′  ′ ′= + − ≈ − 

 
.

Richmond3 has differentiated and rearranged (9.55), where (9.57) is
assumed, in a more convenient for programming form:

( )( ) ( )
/ 2

22 2
5

/ 2

( ) 1 2 3
4

l j R
i

z z

l

e
I z j R R a aR dz j E

R

β

β β ωε
π

+ −

−

 ′ ′+ − + = − ∫ (9.58)

Equation (9.58) is solved numerically by the Method of Moments, after
the structure is discretized into small linear segments.

3 J.H. Richmond, “Digital computer solutions of the rigorous equations for scattering problems,” Proc. IEEE, 53,
pp.796-804, August 1965.
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4. Hallén’s equation
Hallén’s4 equation can be derived as a modification of Pocklington’s

equation. It is easier to solve numerically, but it makes some additional
assumptions. Consider again equation (9.56). It can be written in terms of

zA explicitly as:

2
2

2

,
2 2

0, | |
2 2

i
z

z
z

b b
j E z

d A
A

b ldz
z

ωεµ
β

− − < <+ = 
 < <


(9.59)

When 0b → , one can express the incident field in the gap via the voltage
applied to the gap:

0lim i
g b zV bE→= (9.60)

The ( )i
zE z function is an impulse function of z , such that:

( )i
z gE V zδ= (9.61)

The excitation term in (9.59) collapses into a δ -function:
2

2
2

( )z
z g

d A
A j V z

dz
β ωεµ δ+ = − (9.62)

If 0z ≠ ,
2

2
2

0z
z

d A
A

dz
β+ = (9.63)

Because the current density on the cylinder is symmetrical with respect to
z′, i.e. ( ) ( )z zJ z J z′ ′= − , the potential zA must also be symmetrical. Then,
the general solution of the ODE in (9.63) has the form:

( ) ( )( ) cos sin | |zA z B z C zβ β= + (9.64)

From (9.62) it follows that
0

0
z

g

dA
j V

dz
ωµε

+

−
= − (9.65)

From (9.64) and (9.65) one can calculate the constant C.

( )0

0
cos(0 ) cos(0 )z

g

dA
C C j V

dz
β β ωµε

+

−
+ −= − − = −

4 E. Hallén, “Theoretical investigation into the transmitting and receiving qualities of antennae,” Nova Acta Regiae Soc.
Sci. Upsaliensis, Ser. IV, No. 4, 1938, pp. 1-44.
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2 gC j Vβ ωµε⇒ = −

2 2
g gV V

C j j
µµε
η

⇒ = − = − (9.66)

Equation (9.66) is substituted in (9.64), and zA is expressed with its
integral over the currents, to obtain the final form of Hallén’s integral
equation:

( )
/ 2

/ 2

( ) sin | | cos( )
4 2

l j R
g

z

l

Ve
I z dz j z B z

R

β

β β
π η

+ −

−

′ ′ = − +∫ (9.67)

Here, 2 2( )R a z z′= + − . It must be repeated again that Hallén’s equation
assumes that the incident field exists only in the infinitesimal dipole gap,
while in Pocklington’s equation there are no restrictions on the distribution
of the incident field at the dipole.

5. Modeling the excitation field
• Delta-gap source (Pocklington and Hallén)
• Magnetic frill source (Pocklington)

2a

2

l

2

l

b

i
zE

delta-gap

mJ
ϕ

magnetic frill

mJ
ϕ


