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Chapter 1 
Introduction
This application note is intended to serve as a
primer on superheterodyne spectrum analyzers.
Such analyzers can also be described as frequency-
selective, peak-responding voltmeters calibrated to
display the rms value of a sine wave. It is impor-
tant to understand that the spectrum analyzer is
not a power meter, although we normally use it to
display power directly. But as long as we know
some value of a sine wave (for example, peak or
average) and know the resistance across which we
measure this value, we can calibrate our voltmeter
to indicate power.

What is a spectrum?

Before we get into the details of describing a spec-
trum analyzer, we might first ask ourselves: just
what is a spectrum and why would we want to 
analyze it?

Our normal frame of reference is time. We note
when certain events occur. This holds for electrical
events, and we can use an oscilloscope to view the
instantaneous value of a particular electrical event
(or some other event converted to volts through an
appropriate transducer) as a function of time; that
is, to view the waveform of a signal in the time
domain.

Enter Fourier.1 He tells us that any time-domain
electrical phenomenon is made up of one or more
sine waves of appropriate frequency, amplitude,
and phase. Thus with proper filtering we can
decompose the waveform of figure 1 into separate
sine waves, or spectral components, that we can
then evaluate independently. Each sine wave is
characterized by an amplitude and a phase. In
other words, we can transform a time-domain sig-
nal into its frequency-domain equivalent. In gener-
al, for RF and microwave signals, preserving the
phase information complicates this transformation
process without adding significantly to the value of
the analysis. Therefore, we are willing to do with-
out the phase information. If the signal that we
wish to analyze is periodic, as in our case here,
Fourier says that the constituent sine waves are
separated in the frequency domain by 1/T, where T
is the period of the signal.2

To properly make the transformation from the
time to the frequency domain, the signal must be
evaluated over all time, that is, over ± infinity.
However, we normally take a shorter, more practi-
cal view and assume that signal behavior over sev-
eral seconds or minutes is indicative of the overall
characteristics of the signal. The transformation
can also be made from the frequency to the time
domain, according to Fourier. This case requires
the evaluation of all spectral components over fre-
quencies to ± infinity, and the phase of the individ-
ual components is indeed critical. For example, a
square wave transformed to the frequency domain
and back again could turn into a saw tooth wave if
phase were not preserved.

Figure 1. Complex time-domain signal

1 Jean Baptiste Joseph Fourier, 1768-1830, French mathematician and physicist. 
2 If the time signal occurs only once, then T is infinite, and the frequency representation is a continuum of sine waves.
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So what is a spectrum in the context of this discus-
sion? A collection of sine waves that, when com-
bined properly, produce the time-domain signal
under examination. Figure 1 shows the waveform
of a complex signal. Suppose that we were hoping
to see a sine wave. Although the waveform certain-
ly shows us that the signal is not a pure sinusoid,
it does not give us a definitive indication of the
reason why.

Figure 2 shows our complex signal in both the time
and frequency domains. The frequency-domain dis-
play plots the amplitude versus the frequency of
each sine wave in the spectrum. As shown, the
spectrum in this case comprises just two sine
waves. We now know why our original waveform
was not a pure sine wave. It contained a second
sine wave, the second harmonic in this case.

Are time-domain measurements out? Not at all.
The time domain is better for many measurements,
and some can be made only in the time domain.
For example, pure time-domain measurements
include pulse rise and fall times, overshoot, and
ringing.

Figure 2. Relationship between time and frequency domain

Why measure spectra?

The frequency domain has its measurement
strengths as well. We have already seen in figures
1 and 2 that the frequency domain is better for
determining the harmonic content of a signal.
Communications people are extremely interested
in harmonic distortion. For example, cellular radio
systems must be checked for harmonics of the car-
rier signal that might interfere with other systems
operating at the same frequencies as the harmon-
ics. Communications people are also interested in
distortion of the message modulated onto a carri-
er. Third-order intermodulation (two tones of a
complex signal modulating each other) can be par-
ticularly troublesome because the distortion com-
ponents can fall within the band of interest and so
not be filtered away.
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Spectral occupancy is another important frequen-
cy-domain measurement. Modulation on a signal
spreads its spectrum, and to prevent interference
with adjacent signals, regulatory agencies restrict
the spectral bandwidth of various transmissions.
Electromagnetic interference (EMI) might also be
considered a form of spectral occupancy. Here the
concern is that unwanted emissions, either radiat-
ed or conducted (through the power lines or other
interconnecting wires), might impair the operation
of other systems. Almost anyone designing or man-
ufacturing electrical or electronic products must
test for emission levels versus frequency according
to one regulation or another.

So frequency-domain measurements do indeed
have their place. Figures 3 through 6 illustrate
some of these measurements.

Figure 3. Harmonic distortion test

Figure 5. Digital radio signal and mask showing limits of spectral 
occupancy

Figure 4. Two-tone test on SSB transmitter

Figure 6. Conducted emissions plotted against VDE limits as part of EMI
test
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Chapter 2
The superheterodyne
spectrum analyzer
While we shall concentrate on the superheterodyne
spectrum analyzer in this note, there are several
other spectrum analyzer architectures. Perhaps the
most important non-superheterodyne type is that
which digitizes the time-domain signal and then
performs a Fast Fourier Transform (FFT) to dis-
play the signal in the frequency domain. One
advantage of the FFT approach is its ability to
characterize single-shot phenomena. Another is
that phase as well as magnitude can be measured.
However, at the present state of technology, FFT
machines do have some limitations relative to the
superheterodyne spectrum analyzer, particularly
in the areas of frequency range, sensitivity, and
dynamic range.

Figure 7. Superheterodyne spectrum analyzer

Figure 7 is a simplified block diagram of a super-
heterodyne spectrum analyzer. Heterodyne means
to mix - that is, to translate frequency - and super
refers to super-audio frequencies, or frequencies
above the audio range. Referring to the block dia-
gram in figure 7, we see that an input signal passes
through a low-pass filter (later we shall see why
the filter is here) to a mixer, where it mixes with a
signal from the local oscillator (LO). Because the
mixer is a non-linear device, its output includes
not only the two original signals but also their har-
monics and the sums and differences of the origi-
nal frequencies and their harmonics. If any of the
mixed signals falls within the passband of the
intermediate-frequency (IF) filter, it is further
processed (amplified and perhaps logged), essen-
tially rectified by the envelope detector, digitized
(in most current analyzers), and applied to the ver-
tical plates of a cathode-ray tube (CRT) to produce
a, vertical deflection on the CRT screen (the dis-
play). A ramp generator deflects the CRT beam
horizontally across the screen from left to right.1

The ramp also tunes the LO so that its frequency
changes in proportion to the ramp voltage.

1 Not exactly true for analyzers with digital displays. However, describing the ramp as if it did directly control the CRT beam simplifies the discussion, 
so we shall continue to do so. See CRT Displays.
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If you are familiar with superheterodyne AM
radios, the type that receive ordinary AM broad-
cast signals, you will note a strong similarity
between them and the block diagram of figure 7.
The differences are that the output of a spectrum
analyzer is the screen of a CRT instead of a speak-
er, and the local oscillator is tuned electronically
rather than purely by a front-panel knob.

Since the output of a spectrum analyzer is an X-Y
display on a CRT screen, let’s see what information
we get from it. The display is mapped on a grid
(graticule) with ten major horizontal divisions and
generally eight or ten major vertical divisions. The
horizontal axis is calibrated in frequency that
increases linearly from left to right. Setting the fre-
quency is usually a two-step process. First we
adjust the frequency at the centerline of the gratic-
ule with the center frequency control. Then we
adjust the frequency range (span) across the full
ten divisions with the Frequency Span control.
These controls are independent, so if we change
the center frequency, we do not alter the frequency
span. Some spectrum analyzers allow us to set the
start and stop frequencies as an alternative to set-
ting center frequency and span. In either case, we
can determine the absolute frequency of any signal
displayed and the frequency difference between
any two signals.

The vertical axis is calibrated in amplitude.
Virtually all analyzers offer the choice of a linear
scale calibrated in volts or a logarithmic scale cali-
brated in dB. (Some analyzers also offer a linear
scale calibrated in units of power.) The log scale is
used far more often than the linear scale because
the log scale has a much wider usable range. The
log scale allows signals as far apart in amplitude as
70 to 100 dB (voltage ratios of 3100 to 100,000 and
power ratios of 10,000,000 to 10,000,000,000) to be
displayed simultaneously. On the other hand, the
linear scale is usable for signals differing by no
more than 20 to 30 dB (voltage ratios of 10 to 30).
In either case, we give the top line of the graticule,
the reference level, an absolute value through cali-
bration techniques1 and use the scaling per divi-
sion to assign values to other locations on the
graticule. So we can measure either the absolute
value of a signal or the amplitude difference
between any two signals.

In older spectrum analyzers, the reference level in
the log mode could be calibrated in only one set of
units. The standard set was usually dBm (dB rela-
tive to 1 mW). Only by special request could we get
our analyzer calibrated in dBmV or dBuV (dB rela-
tive to a millivolt or a microvolt, respectively). The
linear scale was always calibrated in volts. Today’s
analyzers have internal microprocessors, and they
usually allow us to select any amplitude units
(dBm, dBuV, dBmV, or volts) on either the log or
the linear scale.

Scale calibration, both frequency and amplitude, is
shown either by the settings of physical switches
on the front panel or by annotation written onto
the display by a microprocessor. Figure 8 shows
the display of a typical microprocessor-controlled
analyzer.

But now let’s turn our attention back to figure 7.

Figure 8. Typical spectrum analyzer display with control settings

1 See amplitude accuracy.
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Tuning equation

To what frequency is the spectrum analyzer of fig-
ure 7 tuned? That depends. Tuning is a function of
the center frequency of the IF filter, the frequency
range of the LO, and the range of frequencies
allowed to reach the mixer from the outside world
(allowed to pass through the low-pass filter). Of all
the products emerging from the mixer, the two
with the greatest amplitudes and therefore the
most desirable are those created from the sum of
the LO and input signal and from the difference
between the LO and input signal. If we can arrange
things so that the signal we wish to examine is
either above or below the LO frequency by the IF,
one of the desired mixing products will fall within
the pass-band of the IF filter and be detected to
create a vertical deflection on the display.

How do we pick the LO frequency and the IF to
create an analyzer with the desired frequency
range? Let us assume that we want a tuning range
from 0 to 2.9 GHz. What IF should we choose?
Suppose we choose 1 GHz. Since this frequency is
within our desired tuning range, we could have an
input signal at 1 GHz. And since the output of a
mixer also includes the original input signals, an
input signal at 1 GHz would give us a constant out-
put from the mixer at the IF. The 1 GHz signal
would thus pass through the system and give us a
constant vertical deflection on the display regard-
less of the tuning of the LO. The result would be a
hole in the frequency range at which we could not
properly examine signals because the display
deflection would be independent of the LO.

So we shall choose instead an IF above the highest
frequency to which we wish to tune. In Agilent
spectrum analyzers that tune to 2.9 GHz, the IF
chosen is about 3.6 (or 3.9) GHz. Now if we wish to
tune from 0 Hz (actually from some low frequency
because we cannot view a to 0-Hz signal with this
architecture) to 2.9 GHz, over what range must the
LO tune? If we start the LO at the IF (LO - IF = 0)
and tune it upward from there to 2.9 GHz above
the IF, we can cover the tuning range with the LO-
minus-IF mixing product. Using this information,
we can generate a tuning equation:

fsig = fLO - fIF

where fsig = signal frequency, 
fLO = local oscillator frequency, and 
fIF = intermediate frequency (IF).

If we wanted to determine the LO frequency need-
ed to tune the analyzer to a low-, mid-, or high-fre-
quency signal (say, 1 kHz, 1.5 GHz, and 2.9 GHz),
we would first restate the tuning equation in terms
of fLO:

fLO = fsig + fIF.



9

Then we would plug in the numbers for the signal
and IF:

fLO = 1 kHz + 3.6 GHz = 3.600001 GHz, 
fLO = 1.5 GHz + 3.6 GHz = 5.1 GHz, and 
fLO = 2.9 GHz; + 3.6 GHz = 6.5 GHz.

Figure 9 illustrates analyzer tuning. In the figure,
fLO is not quite high enough to cause the fLO – fsig
mixing product to fall in the IF passband, so there
is no response on the display. If we adjust the
ramp generator to tune the LO higher, however,
this mixing product will fall in the IF passband at
some point on the ramp (sweep), and we shall see
a response on the display.

Since the ramp generator controls both the hori-
zontal position of the trace on the display and the
LO frequency, we can now calibrate the horizontal
axis of the display in terms of input-signal frequency.

Figure 9. The LO must be tuned to fIF + fsig to produce a response on the
display.

We are not quite through with the tuning yet. 
What happens if the frequency of the input signal
is 8.2 GHz? As the LO tunes through its 3.6-to-
6.5-GHz range, it reaches a frequency (4.6 GHz) at
which it is the IF away from the 8.2-GHz signal,
and once again we have a mixing product equal to
the IF, creating a deflection on the display. In
other words, the tuning equation could just as eas-
ily have been

Fsig = fLO + fIF.

This equation says that the architecture of figure 7
could also result in a tuning range from 7.2 to 
10.1 GHz. But only if we allow signals in that range
to reach the mixer. The job of the low-pass filter in
figure 7 is to prevent these higher frequencies
from getting to the mixer. We also want to keep 
signals at the intermediate frequency itself from
reaching the mixer, as described above, so the 
low-pass filter must do a good job of attenuating
signals at 3.6 GHz as well as in the range from 7.2
to 10.1 GHz.
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In summary, we can say that for a single-band RF
spectrum analyzer, we would choose an IF above
the highest frequency of the tuning range, make
the LO tunable from the IF to the IF plus the upper
limit of the tuning range, and include a low-pass
filter in front of the mixer that cuts off below the
IF.

To separate closely spaced signals (see Resolution
below), some spectrum analyzers have IF band-
widths as narrow as 1 kHz; others, 100 Hz; still
others, 10 Hz. Such narrow filters are difficult to
achieve at a center frequency of 3.6 GHz. So we
must add additional mixing stages, typically two to
four, to down-convert from the first to the final IF.
Figure 10 shows a possible IF chain based on the
architecture of the Agilent 71100. The full tuning
equation for the 71100 is:

fsig = fLO1 – (fLO2 + fLO3 + fLO4 + ffinal IF).

However,

fLO2 + fLO3 + fLO4 + ffinal IF

= 3.3 GHz + 300 MHz + 18.4 MHz + 3 MHz 
= 3.6214 GHz, the first IF.

So simplifying the tuning equation by using just
the first IF leads us to the same answers. Although
only passive filters are shown in the diagram, the
actual implementation includes amplification in
the narrower IF stages, and a logarithmic amplifier
is part of the final IF section.1

Figure 10. Most spectrum analyzers use two to four mixing steps to
reach the final IF

Most RF analyzers allow an LO frequency as low as
and even below the first IF. Because there is not
infinite isolation between the LO and IF ports of
the mixer, the LO appears at the mixer output.
When the LO equals the IF, the LO signal itself is
processed by the system and appears as a
response on the display. This response is called LO
feed through. LO feed through actually can be used
as a 0-Hz marker.

An interesting fact is that the LO feed through
marks 0 Hz with no error. When we use an analyz-
er with non-synthesized LOs, frequency uncertain-
ty can be ±5 MHz or more, and we can have a tun-
ing uncertainty of well over 100% at low frequen-
cies. However, if we use the LO feed through to
indicate 0 Hz and the calibrated frequency span to
indicate frequencies relative to the LO feed
through, we can improve low-frequency accuracy
considerably. For example, suppose we wish to
tune to a 10-kHz signal on an analyzer with 5-MHz
tuning uncertainty and 3% span accuracy. If we
rely on the tuning accuracy, we might find the sig-
nal with the analyzer tuned anywhere from -4.99
to 5.01 MHz. On the other hand, if we set our ana-
lyzer to a 20-kHz span and adjust tuning to set the
LO feed through at the left edge of the display, the
10-kHz signal appears within ±0.15 division of the
center of the display regardless of the indicated
center frequency.

1 In the text we shall round off some of the frequency values for simplicity although the exact values are shown in the figures.
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Resolution

Analog filters

Frequency resolution is the ability of a spectrum
analyzer to separate two input sinusoids into dis-
tinct responses. But why should resolution even be
a problem when Fourier tells us that a signal (read
sine wave in this case) has energy at only one fre-
quency? It seems that two signals, no matter how
close in frequency, should appear as two lines on
the display. But a closer look at our superhetero-
dyne receiver shows why signal responses have a
definite width on the display. The output of a
mixer includes the sum and difference products
plus the two original signals (input and LO). The
intermediate frequency is determined by a band-
pass filter, and this filter selects the desired mix-
ing product and rejects all other signals. Because
the input signal is fixed and the local oscillator is
swept, the products from the mixer are also swept.
If a mixing product happens to sweep past the IF,
the characteristics of the bandpass filter are traced
on the display. See figure 11. The narrowest filter
in the chain determines the overall bandwidth, and
in the architecture of figure 10, this filter is in the
3-MHz IF.

Figure 11. As a mixing product sweeps past the IF filter, the filter shape
is traced on the display

So unless two signals are far enough apart, the
traces they make fall on top of each other and look
like only one response. Fortunately, spectrum ana-
lyzers have selectable resolution (IF) filters, so it is
usually possible to select one narrow enough to
resolve closely spaced signals.
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Agilent data sheets indicate resolving power by
listing the 3-dB bandwidths of the available IF fil-
ters. This number tells us how close together
equal-amplitude sinusoids can be and still be
resolved. In this case there will be about a 3-dB
dip between the two peaks traced out by these sig-
nals. See figure 12. The signals can be closer
together before their traces merge completely, but
the 3-dB bandwidth is a good rule of thumb for
resolution of equal-amplitude signals.1

More often than not we are dealing with sinusoids
that are not equal in amplitude. What then? The
smaller sinusoid can be lost under the skirt of the
response traced out by the larger. This effect is
illustrated in figure 13. Thus another specification
is listed for the resolution filters: bandwidth selec-
tivity (or selectivity or shape factor). For Agilent
analyzers, bandwidth selectivity is specified as the
ratio of the 60-dB bandwidth to the 3-dB band-
width, as shown in figure 14. Some analyzer 
manufacturers specify the 60:6 dB ratio. The ana-
log filters in Agilent analyzers are synchronously-
tuned, have four or five poles, and are nearly
Gaussian in shape. Bandwidth selectivity varies
from 25:1 for the wider filters of older Agilent ana-
lyzers to 11:1 for the narrower filters of newer 
stabilized and high-performance analyzers.

So what resolution bandwidth must we choose to
resolve signals that differ by 4 kHz and 30 dB,
assuming 11:1 bandwidth selectivity? We shall
start by assuming that the analyzer is in its most
commonly used mode: a logarithmic amplitude and
a linear frequency scale. In this mode, it is fairly
safe to assume that the filter skirt is straight
between the 3- and 60-dB points, and since we are
concerned with rejection of the larger signal when
the analyzer is tuned to the smaller signal, we need
to consider not the full band-width but the fre-
quency difference from the filter center frequency
to the skirt. To determine how far down the filter
skirt is at a given offset, we have:

–3 dB – [(Offset – BW3dB/2)/(BW60dB/2 – BW3dB/2)]*Diff60,3dB’

where 
Offset = frequency separation of two signals,
BW3dB = 3-dB bandwidth,
BW60dB = 60-dB bandwidth, and
Diff60,3dB = difference between 60 and 3 dB (57 dB).

Figure 12. Two equal- amplitude sinusoids separated by the 3 dB BW of
the selected IF filter can be resolved

Figure 13. A low-level signal can be lost under skirt of the response to a
larger signal

Figure 14. Bandwidth selectivity, ratio of 60 dB to 3 dB bandwidths,
helps determine resolving power for unequal sinusoids

1 If you experiment with resolution on a spectrum analyzer that has an analog display or one that has a digital display and Rosenfell display mode, use enough 
video filtering to create a smooth trace; otherwise, there will be a smearing as the two signals interact. While the smeared trace certainly indicates the presence 
of more than one signal, it is difficult to determine the amplitudes of the individual signals from that trace. Spectrum analyzers with digital displays and positive 
peak as their normal display mode may not show the smearing effect. You can observe the smearing by se-lecting the alternate sample display mode.
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Let’s try the 3-kHz filter. At 60 dB down it is about
33 kHz wide but only about 16.5 kHz from center
frequency to the skirt. At an offset of 4 kHz, the fil-
ter skirt is down:

–3 – [(4 – 3/2)/(33/2 - 3/2)]*(60 – 3) = -12.5 dB,

not far enough to allow us to see the smaller sig-
nal. If we use numbers for the 1-kHz filter, we find
that the filter skirt is down:

–3 – [4 – 1/2)/(11/2 –1/2)1*(60 – 3) = –42.9 dB,

and the filter resolves the smaller signal. See 
figure 15. Figure 16 shows a plot of typical resolu-
tion versus signal separation for several resolution
bandwidths in the 8566B.

Digital filters

Some spectrum analyzers, such as the Agilent 8560
and ESA-E Series, use digital techniques to realize
their narrower resolution-bandwidth filters 
(100 Hz and below for the 8560 family, 300 Hz and
below for the ESA-E Series family). As shown in
figure 17, the linear analog signal is mixed down to
4.8 kHz and passed through a bandpass filter only
600 Hz wide. This IF signal is then amplified, sam-
pled at a 6.4-kHz rate, and digitized.

Once in digital form, the signal is put through a
Fast Fourier Transform algorithm. To transform
the appropriate signal, the analyzer must be fixed-
tuned (not sweeping); that is, the transform must
be done on a time-domain signal. Thus the 8560
analyzers step in 600-Hz increments, instead of 

Figure 17. Digital implementation of 10, 30, and 100 Hz resolution filters
in 8560A, 8561B, and 8563A

sweeping continuously, when we select one of the
digital resolution bandwidths. This stepped tuning
can be seen on the display, which is updated in
600-Hz increments as the digital processing is com-
pleted. The ESA-E Series uses a similar scheme
and updates its displays in approximately 900-Hz
increments.

An advantage of digital processing as done in
these analyzers is a bandwidth selectivity of 5:11.
And, this selectivity is available on the narrowest
filters, the ones we would choose to separate the
most closely spaced signals.

Figure 15. The 3 kHz filter does not resolve smaller signal - the 1 kHz
filter does

Figure 16. Resolution versus offset for the 8566B

1 Also see sweep time.
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Residual FM

Is there any other factor that affects the resolution
of a spectrum analyzer? Yes, the stability of the
LOs in the analyzer, particularly the first LO. The
first LO is typically a YIG-tuned oscillator (tuning
somewhere in the 2 to 7 GHz range), and this type
of oscillator has a residual FM of 1 kHz or more.
This instability is transferred to any mixing prod-
ucts resulting from the LO and incoming signals,
and it is not possible to determine whether the sig-
nal or LO is the source of the instability.

The effects of LO residual FM are not visible on
wide resolution bandwidths. Only when the band-
width approximates the peak-to-peak excursion of
the FM does the FM become apparent. Then we see
that a ragged-looking skirt as the response of the
resolution filter is traced on the display. If the fil-
ter is narrowed further, multiple peaks can be pro-
duced even from a single spectral component.
Figure 18 illustrates the point. The widest
response is created with a 3-kHz bandwidth; the
middle, with a 1-kHz bandwidth; the innermost,
with a 100-Hz bandwidth. Residual FM in each
case is about 1 kHz.

So the minimum resolution bandwidth typically
found in a spectrum analyzer is determined at
least in part by the LO stability. Low-cost analyz-
ers, in which no steps are taken to improve upon
the inherent residual FM of the YIG oscillators,
typically have a minimum bandwidth of 1 kHz. In
mid-performance analyzers, the first LO is stabi-
lized and filters as narrow as 10 Hz are included.
Higher-performance analyzers have more elaborate
synthesis schemes to stabilize all their LOs and so
have bandwidths down to 1 Hz. With the possible
exception of economy analyzers, any instability
that we see on a spectrum analyzer is due to the
incoming signal.

Figure 18. LO residual FM is seen only when the resolution bandwidth is
less than the peak-to-peak FM

Phase noise

Even though we may not be able to see the actual
frequency jitter of a spectrum analyzer LO system,
there is still a manifestation of the LO frequency
or phase instability that can be observed: phase
noise (also called sideband noise). No oscillator is
perfectly stable. All are frequency- or phase-modu-
lated by random noise to some extent. As noted
above, any instability in the LO is transferred to
any mixing products resulting from the LO and
input signals, so the LO phase-noise modulation
sidebands appear around any spectral component
on the display that is far enough above the broad-
band noise floor of the system (figure 19). The
amplitude difference between a displayed spectral
component and the phase noise is a function of the
stability of the LO. The more stable the LO, the far-
ther down the phase noise. The amplitude differ-
ence is also a function of the resolution band-
width. If we reduce the resolution bandwidth by a
factor of ten, the level of the phase noise decreases
by 10 dB1.

Figure 19. Phase noise is displayed only when a signal is displayed far
enough above the system noise floor

1 The effect is the same for the broadband noise floor (or any broadband noise signal). See sensitivity.
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The shape of the phase-noise spectrum is a func-
tion of analyzer design. In some analyzers the
phase noise is a relatively flat pedestal out to the
bandwidth of the stabilizing loop. In others, the
phase noise may fall away as a function of frequen-
cy offset from the signal. Phase noise is specified
in terms of dBc or dB relative to a carrier. It is
sometimes specified at a specific frequency offset;
at other times, a curve is given to show the phase-
noise characteristics over a range of offsets.

Generally, we can see the inherent phase noise of a
spectrum analyzer only in the two or three narrow-
est resolution filters, when it obscures the lower
skirts of these filters. The use of the digital filters
described above does not change this effect. For
wider filters, the phase noise is hidden under the
filter skirt just as in the case of two unequal sinu-
soids discussed earlier.

In any case, phase noise becomes the ultimate limi-
tation in an analyzer’s ability to resolve signals of
unequal amplitude. As shown in figure 20, we may
have determined that we can resolve two signals
based on the 3-dB bandwidth and selectivity, only
to find that the phase noise covers up the smaller
signal.

Figure 20. Phase noise can prevent resolution of unequal signals

Sweep time

Analog resolution filters

If resolution was the only criterion on which we
judged a spectrum analyzer, we might design our
analyzer with the narrowest possible resolution
(IF) filter and let it go at that. But resolution
affects sweep time, and we care very much about
sweep time. Sweep time directly affects bow long it
takes to complete a measurement.

Resolution comes into play because the IF filters
are band-limited circuits that require finite times
to charge and discharge. If the mixing products are
swept through them too quickly, there will be a
loss of displayed amplitude as shown in figure 21.
(See Envelope Detector below for another
approach to IF response time.) If we think about
bow long a mixing product stays in the passband
of the IF filter, that time is directly proportional to
bandwidth and inversely proportional to the
sweep in Hz per unit time, or:

Time in passband = 
(RBW)/[(Span)/(ST)] = [(RBW)(ST)]/(Span),

where RBW = resolution bandwidth and 
ST = sweep time.

Figure 21. Sweeping an analyzer too fast causes a drop in displayed
amplitude and a shift in indicated frequency
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On the other hand, the rise time of a filter is
inversely proportional to its bandwidth, and if we
include a constant of proportionality, k, then:

Rise time = k/(RBW).

If we make the times equal and solve for sweep
time, we have:

k/(RBW) = [(RBW)(ST)]/(Span), or:

ST = k(Span)/(RBW)2.

The value of k is in the 2 to 3 range for the syn-
chronously-tuned, near-Gaussian filters used in
Agilent analyzers. For more nearly square, stagger-
tuned filters, k is 10 to 15.

The important message here is that a change in
resolution has a dramatic effect on sweep time.
Some spectrum analyzers have resolution filters
selectable only in decade steps, so selecting the
next filter down for better resolution dictates a
sweep time that goes up by a factor of 100!

How many filters, then, would be desirable in a
spectrum analyzer? The example above seems to
indicate that we would want enough filters to pro-
vide something less than decade steps. Most
Agilent analyzers provide values in a 1,3,10
sequence or in ratios roughly equaling the square
root of 10. So sweep time is affected by a factor of
about 10 with each step in resolution. Some series
of Agilent spectrum analyzers offer bandwidth
steps of just 10% for an even better compromise
among span, resolution, and sweep time.

Most spectrum analyzers available today automati-
cally couple sweep time to the span and resolution-
bandwidth settings. Sweep time is adjusted to
maintain a calibrated display. If a sweep time
longer than the maximum available is called for,
the analyzer indicates that the display is uncali-
brated. We are allowed to override the automatic
setting and set sweep time manually if the need
arises.

Digital resolution filters

The digital resolution filters used in the Agilent
8560 and ESA-E Series have an effect on sweep
time that is different from the effects we’ve just
discussed for analog filters. For the Agilent 8560
family, this difference occurs because the signal
being analyzed is processed in 600-Hz blocks. So
when we select the 10-Hz resolution bandwidth,
the analyzer is in effect simultaneously processing
the data in each 600-Hz block through 60 contigu-
ous 10-Hz filters. If the digital processing were
instantaneous, we would expect a factor-of-60
reduction in sweep time. The reduction factor is
somewhat less, but is significant nonetheless.
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Envelope detector

Spectrum analyzers typically convert the IF signal
to video1 with an envelope detector. In its simplest
form, an envelope detector is a diode followed by a
parallel RC combination. See figure 22. The output
of the IF chain, usually a sine wave, is applied to
the detector. The time constants of the detector are
such that the voltage across the capacitor equals
the peak value of the IF signal at all times; that is,
the detector can follow the fastest possible changes
in the envelope of the IF signal but not the instan-
taneous value of the IF sine wave itself (nominally
3, 10.7, or 21.4 MHz in Agilent spectrum analyzers).

Figure 22. Envelope detector

For most measurements, we choose a resolution
bandwidth narrow enough to resolve the individ-
ual spectral components of the input signal. If we
fix the frequency of the LO so that our analyzer is
tuned to one of the spectral components of the sig-
nal, the output of the IF is a steady sine wave with
a constant peak value. The output of the envelope
detector will then be a constant (dc) voltage, and
there is no variation for the detector to follow.

However, there are times when we deliberately
choose a resolution bandwidth wide enough to
include two or more spectral components. At other
times, we have no choice. The spectral components
are closer in frequency than our narrowest band-
width. Assuming only two spectral components
within the passband, we have two sine waves
interacting to create a beat note, and the envelope
of the IF signal varies as shown in figure 23 as the
phase between the two sine waves varies.

Figure 23. Output of the envelope detector follows the peaks of the IF
signal.

1 A signal whose frequency range extends from zero (dc) to some upper frequency determined by the circuit elements.
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What determines the maximum rate at which the
envelope of the IF signal can change? The width of
the resolution (IF) filter. This bandwidth deter-
mines how far apart two input sinusoids can be
and, after the mixing process, be within the filter
at the same time.1 If we assume a 21.4-MHz final IF
and a 100-kHz bandwidth, two input signals sepa-
rated by 100 kHz would produce, with the appro-
priate LO frequency and two or three mixing
processes, mixing products of 21.35 and 21.45 MHz
and so meet the criterion. See figure 23. The detec-
tor must be able to follow the changes in the 
envelope created by these two signals but not the
nominal 21.4 MHz IF signal itself.

The envelope detector is what makes the spectrum
analyzer a voltmeter. If we duplicate the situation
above and have two equal-amplitude signals in the
passband of the IF at the same time, what would
we expect to see on the display? A power meter
would indicate a power level 3 dB above either sig-
nal; that is, the total power of the two. Assuming
that the two signals are close enough so that, with
the analyzer tuned half way between them, there is
negligible attenuation due to the roll-off of the fil-
ter, the analyzer display will vary between a value
twice the voltage of either (6 dB greater) and zero
(minus infinity on the log scale). We must remem-
ber that the two signals are sine waves (vectors) at
different frequencies, and so they continually
change in phase with respect to each other. At
some time they add exactly in phase; at another,
exactly out of phase.

So the envelope detector follows the changing
amplitude values of the peaks of the signal from
the IF chain but not the instantaneous values. And
gives the analyzer its voltmeter characteristics.

Although the digitally-implemented resolution
bandwidths do not have an analog envelope detec-
tor, one is simulated for consistency with the other
bandwidths.

Figure 24. Spectrum analyzers display signal plus noise

Display smoothing

Video filtering

Spectrum analyzers display signals plus their own
internal noise,2 as shown in figure 24. To reduce
the effect of noise on the displayed signal ampli-
tude, we often smooth or average the display, as
shown in figure 25. All Agilent superheterodyne
analyzers include a variable video filter for this
purpose. The video filter is a low-pass filter that
follows the detector and determines the bandwidth
of the video circuits that drive the vertical deflec-
tion system of the display. As the cutoff frequency
of the video filter is reduced to the point at which
it becomes equal to or less than the bandwidth of
the selected resolution (IF) filter, the video system
can no longer follow the more rapid variations of
the envelope of the signal(s) passing through the
IF chain. The result is an averaging or smoothing
of the displayed signal.

Figure 25. Display of figure 24 after full smoothing

1 For this discussion, we assume that the filter is perfectly rectangular.
2 See dynamic range versus measurement uncertainty.
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The effect is most noticeable in measuring noise,
particularly when a wide resolution bandwidth is
used. As we reduce the video bandwidth, the peak-
to-peak variations of the noise are reduced. As fig-
ure 26 shows, the degree of reduction (degree of
averaging or smoothing) is a function of the ratio
of the video to resolution bandwidths. At ratios of
0.01 or less, the smoothing is very good; at higher
ratios, not so good. That part of the trace that is
already smooth - for example, a sinusoid displayed
well out of the noise - is not affected by the video
filter.

(If we are using an analyzer with a digital display
and "pos peak" display mode1, we notice two
things: changing the resolution bandwidth does not
make much difference in the peak-to-peak fluctua-
tions of the noise, and changing the video band-
width seems to affect the noise level. The fluctua-
tions do not change much because the analyzer is
displaying only the peak values of the noise.
However, the noise level appears to change with
video bandwidth because the averaging [smooth-
ing] changes, thereby changing the peak values of
the noise. See figure 27. We can select sample
detection to get the full effect.)

Because the video filter has its own response 
time, the sweep time equation becomes: 
ST = k(Span)/[(RBW)(VBW)] when the video 
bandwidth is equal to or less than the resolution
bandwidth. However, sweep time is affected only
when the value of the signal varies over the span
selected. For example, if we were experimenting
with the analyzer’s own noise in the example
above, there would be no need to slow the sweep
because the average value of the noise is constant
across a very wide frequency range. On the other
hand, if there is a discrete signal in addition to the
noise, we must slow the sweep to allow the video
filter to respond to the voltage changes created as
the mixing product of the discrete signal sweeps
past the IF. Those analyzers that set sweep time
automatically account for video bandwidth as well
as span and resolution bandwidth.

Figure 26. Smoothing effect of video-resolution bandwidth ratios of 
3, 1/10, and 1/100 (on a single sweep)

Figure 27. On analyzers using pos peak display mode, reducing the
video bandwidth lowers the peak noise but not the average noise.
Lower trace shows average noise.

1 See digital displays.
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Video averaging

Analyzers with digital displays often offer another
choice for smoothing the display: video averaging.
In this case, averaging is accomplished over two or
more sweeps on a point-by-point basis. At each dis-
play point, the new value is averaged in with the
previously averaged data:

Aavg = [(n - 1)/n]Aprior avg + (1/n)An,

where Aavg = new average value,
Aprior avg = average from prior sweep,
An= measured value on current sweep, and 
n = number of current sweep.

Thus the display gradually converges to an average
over a number of sweeps. As with video filtering,
we can select the degree of averaging or smoothing
by setting the number of sweeps over which the
averaging occurs. Figure 28 shows video averaging
for different numbers of sweeps. While video aver-
aging has no effect on sweep time, the time to
reach a given degree of averaging is about the
same as with video filtering because of the number
of sweeps required1.

Which form of display smoothing should we pick?
In many cases, it does not matter. If the signal is
noise or a low-level sinusoid very close to the
noise, we get the same results with either video fil-
tering or video averaging.

However, there is a distinct difference between the
two. Video filtering performs averaging in real
time; that is, we see the full effect of the averaging
or smoothing at each point on the display as the
sweep progresses. Each point is averaged only
once, for a time of about 1/VBW on each sweep.
Video averaging, on the other hand, requires multi-
ple sweeps to achieve the full degree of averaging,
and the averaging at each point takes place over
the full time period needed to complete the multi-
ple sweeps.

As a result, we can get significantly different
results from the two averaging methods on certain
signals. For example, a signal with a spectrum that
changes with time can yield a different average on
each sweep when we use video filtering. However,
if we choose video averaging over many sweeps, we
shall get a value much closer to the true average.
See figure 29.

Figure 28. Effect of video (digital) averaging for 1, 5, 20, and 100 sweeps
(top to bottom)

Figure 29A. Analog filtering

Figure 29B. Digital averaging

Figure 29. Video (analog) filtering and video (digital) averaging yield
different results on an FM broadcast signal

1 Most analyzers automatically switch to a sample display mode when video averaging is selected. See digital displays for potential loss of signal information in 
the sample mode.
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Amplitude measurements

CRT displays

Up until the mid-1970s, spectrum analyzer displays
were purely analog. That is, the output of the enve-
lope detector was simply amplified and applied
directly to the vertical plates of the CRT. This
mode of operation meant that the CRT trace pre-
sented a continuous indication of the signal enve-
lope, and no information was lost. However, analog
displays had drawbacks. The major problem was in
handling the long sweep times when narrow reso-
lution bandwidths were used. In the extreme case,
the display became a spot that moved slowly
across the CRT with no real trace on the display.
Even with long-persistence phosphors such as P7, 
a meaningful display was not possible with the
longer sweep times. One solution in those days was
time-lapse photography.

Another solution was the storage CRT. These tubes
included mechanisms to store a trace so that it
could be displayed on the screen for a reasonable
length of time before it faded or became washed
out. Initially, storage was binary in nature. We
could choose permanent storage, or we could erase
the display and start over. Hewlett-Packard (now
Agilent) pioneered a variable-persistence mode in
which we could adjust the fade rate of the display.
When properly adjusted, the old trace would just
fade out at the point where the new trace was
updating the display. The idea was to provide a
display that was continuous, had no flicker, and
avoided confusing overwrites. The system worked
quite well with the correct trade-off between trace
intensity and fade rate. The difficulty was that the
intensity and the fade rate had to be readjusted for
each new measurement situation.

When digital circuitry became affordable in the
mid-1970s, it was quickly put to use in spectrum
analyzers. Once a trace had been digitized and put
into memory, it was permanently available for dis-
play. It became an easy matter to update the dis-
play at a flicker-free rate without blooming or fad-
ing. The data in memory was updated at the sweep
rate, and since the contents of memory were writ-
ten to the display at a flicker-free rate, we could
follow the updating as the analyzer swept through
its selected frequency span just as we could with
analog systems.
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Digital displays

But digital systems were had problems of their
own. What value should be displayed? As figure 30
shows, no matter how many data points we use
across the CRT, each point must represent what
has occurred over some frequency range and,
although we usually do not think in terms of time
when dealing with a spectrum analyzer, over some
time interval. Let us imagine the situation illustrat-
ed in figure 30: we have a display that contains a
single CW signal and otherwise only noise. Also,
we have an analog system whose output we wish 
to display as faithfully as possible using digital
techniques.

As a first method, let us simply digitize the instan-
taneous value of the signal at the end of each
interval (also called a cell or bucket). This is the
sample mode. To give the trace a continuous look,
we design a system that draws vectors between the
points. From the conditions of figure 30, it appears
that we get a fairly reasonable display, as shown in
figure 31. Of course, the more points in the trace,
the better the replication of the analog signal. The
number of points is limited, with 400, 600, 800,
and 1,000 being typical.1 As shown in figure 32,
more points do indeed get us closer to the analog
signal.

While the sample mode does a good job of indicat-
ing the randomness of noise, it is not a good mode
for a spectrum analyzer's usual function: analyzing
sinusoids. If we were to look at a 100-MHz comb 
on the Agilent 71210, we might set it to span from
0 to 22 GHz. Even with 1,000 display points, each
point represents a span of 22 MHz, far wider than
the maximum 3-MHz resolution bandwidth.

Figure 30. When digitizing an analog signal, what value should be 
displayed at each point?

Figure 31. The sample display mode using ten points to display the 
signal of figure 30

Figure 32. More points produce a display closer to an analog display

1 The Agilent ESA-E and 71000 families allow selection of the number of trace points, 2-8192, for the ESA-E, 3-1024, for the 71000.
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As a result, the true amplitude of a comb tooth is
shown only if its mixing product happens to fall at
the center of the IF when the sample is taken.
Figure 33 shows a 5-GHz span with a 1-MHz band-
width; the comb teeth should be relatively equal in
amplitude. Figure 34 shows a 500-MHz span com-
paring the true comb with the results from the
sample mode; only a few points are used to exag-
gerate the effect. (The sample trace appears shifted
to the left because the value is plotted at the begin-
ning of each interval.)

One way to insure that all sinusoids are reported
is to display the maximum value encountered in
each cell. This is the positive-peak display mode, or
pos peak. This display mode is illustrated in figure
35. Figure 36 compares pos peak and sample dis-
play modes. Pos peak is the normal or default dis-
play mode offered on many spectrum analyzers
because it ensures that no sinusoid is missed,
regardless of the ratio between resolution band-
width and cell width. However, unlike sample
mode, pos peak does not give a good representa-
tion of random noise because it captures the crests
of the noise. So spectrum analyzers using the pos
peak mode as their primary display mode generally
also offer the sample mode as an alternative.

To provide a better visual display of random noise
than pos peak and yet avoid the missed-signal
problem of the sample mode, the Rosenfell display
mode is offered on many spectrum analyzers.
Rosenfell is not a person’s name but rather a
description of the algorithm that tests to see if the
signal rose and fell within the cell represented by a
given data point. Should the signal both rise and
fall, as determined by pos-peak and neg-peak
detectors, then the algorithm classifies the signal
as noise. In that case, an odd-numbered data point
indicates the maximum value encountered during
its cell. On the other band, an even-numbered data
point indicates the minimum value encountered
during its cell. Rosenfell and sample modes are
compared in figure 37.

Figure 33. A 5-GHz span of a 100-MHz comb in the sample display mode.
The actual comb values are relatively constant over this range.

Figure 34. The actual comb and results of the sample display mode over
a 500-MHz span. When resolution bandwidth is narrower than the sam-
ple interval, the sample mode can give erroneous results. (The sample
trace has only 20 points to exaggerate the effect.)

Figure 35. Pos peak display mode versus actual comb

Figure 36. Comparison of sample and pos peak display modes

Figure 37. Comparison of Rosenfell and sample display modes
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What happens when a sinusoidal signal is encoun-
tered? We know that as a mixing product is swept
past the IF filter, an analyzer traces out the shape
of the filter on the display. If the filter shape is
spread over many display points, then we
encounter a situation in which the displayed signal
only rises as the mixing product approaches the
center frequency of the filter and only falls as the
mixing product moves away from the filter center
frequency. In either of these cases, the pos-peak
and neg-peak detectors sense an amplitude change
in only one direction, and, according to the
Rosenfell algorithm, the maximum value in each
cell is displayed. See figure 38.

What happens when the resolution bandwidth is
narrow relative to a cell? If the peak of the
response occurs anywhere but at the very end of
the cell, the signal will both rise and fall during the
cell. If the cell happens to be an odd-numbered
one, all is well. The maximum value encountered
in the cell is simply plotted as the next data point.
However, if the cell is even-numbered, then the
minimum value in the cell is plotted. Depending on
the ratio of resolution bandwidth to cell width, the
minimum value can differ from the true peak value
(the one we want displayed) by a little or a lot. In
the extreme, when the cell is much wider than the
resolution bandwidth, the difference between the
maximum and minimum values encountered in the
cell is the full difference between the peak signal
value and the noise. Since the Rosenfell algorithm
calls for the minimum value to be indicated during
an even-numbered cell, the algorithm must include
some provision for preserving the maximum value
encountered in this cell.

To ensure no loss of signals, the pos-peak detector
is reset only after the peak value has been used on
the display. Otherwise, the peak value is carried
over to the next cell. Thus when a signal both rises
and falls in an even-numbered cell, and the mini-
mum value is displayed, the pos-peak detector is
not reset. The pos-peak value is carried over to the
next cell, an odd-numbered cell. During this cell,
the pos-peak value is updated only if the signal
value exceeds the value carried over. The displayed
value, then, is the larger of the held-over value and
the maximum value encountered in the new, odd-
numbered cell. Only then is the pos-peak detector
reset.

This process may cause a maximum value to be
displayed one data point too far to the right, but
the offset is usually only a small percentage of the
span. Figure 39 shows what might happen in such
a case. A small number of data points exaggerate
the effect.

Figure 38. When detected signal only rises or falls, as when mixing
product sweeps past resolution filter, Rosenfell displays maximum 
values

Figure 39. Rosenfell when signal peak falls between data points 
(fewer trace points exaggerate the effect)

The Rosenfell display mode does a better job of
combining noise and discrete spectral components
on the display than does pos peak. We get a much
better feeling for the noise with Rosenfell.
However, because it allows only maxima and mini-
ma to be displayed, Rosenfell does not give us the
true randomness of noise as the sample mode
does. For noise signals, then, the sample display
mode is the best.

Agilent analyzers that use Rosenfell as their
default, or normal, display mode also allow selec-
tion of the other display modes - pos peak, neg
peak, and sample.

As we have seen, digital displays distort signals in
the process of getting them to the screen. However,
the pluses of digital displays greatly outweigh the
minuses. Not only can the digital information be
stored indefinitely and refreshed on the screen
without flicker, blooming, or fade, but once data is
in memory, we can add capabilities such as mark-
ers and display arithmetic or output data to a com-
puter for analysis or further digital signal processing.
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Amplitude accuracy

Now that we have our signal displayed on the CRT,
let’s look at amplitude accuracy. Or, perhaps bet-
ter, amplitude uncertainty. Most spectrum analyz-
ers these days are specified in terms of both
absolute and relative accuracy. However, relative
performance affects both, so let us look at those
factors affecting relative measurement uncertainty
first.

Relative uncertainty

When we make relative measurements on an
incoming signal, we use some part of the signal as
a reference. For example, when we make second-
harmonic distortion measurements, we use the
fundamental of the signal as our reference.
Absolute values do not come into play1; we are
interested only in how the second harmonic differs
in amplitude from the fundamental.

So what factors come into play? Table 1 gives us a
reasonable shopping list. The range of values given
covers a wide variety of spectrum analyzers. For
example, frequency response, or flatness, is fre-
quency-range dependent. A low-frequency RF ana-
lyzer might have a frequency response of ±0.5 dB2.
On the other hand, a microwave spectrum analyzer
tuning in the 20-GHz range could well have a fre-
quency response in excess of ±4 dB. Display fideli-
ty covers a variety of factors. Among them are the
log amplifier (how true the logarithmic characteris-
tic is), the detector (how linear), and the digitizing
circuits (how linear). The CRT itself is not a factor
for those analyzers using digital techniques and
offering digital markers because the marker infor-
mation is taken from trace memory, not the CRT.
The display fidelity is better over small amplitude
differences, so a typical specification for display
fidelity might read 0.1 dB/dB, but no more than
the value shown in table 1 for large amplitude 
differences.

Figure 40. Controls that affect amplitude accuracy

Table 1. Amplitude uncertainties

Relative ±dB
Frequency response 0.5-4

Display fidelity 0.5-2

∆RF attenuator 0.5-2

∆lF attenuator/gain 0.1-1

∆Resolution bandwidth 0.1-1

∆CRT scaling 0.1-1

Absolute
Calibrator 0.2-1

The remaining items in the table involve control
changes made during the course of a measure-
ment. See figure 40. Because an RF input attenua-
tor must operate over the entire frequency range
of the analyzer, its step accuracy, like frequency
response, is a function of frequency. At low RF fre-
quencies, we expect the attenuator to be quite
good; at 20 GHz, not as good. On the other hand,
the IF attenuator (or gain control) should be more
accurate because it operates at only one frequency.
Another parameter that we might change during
the course of a measurement is resolution band-
width. Different filters have different insertion
losses. Generally we see the greatest difference
when switching between inductor-capacitor (LC)
filters, typically used for the wider resolution
bandwidths, and crystal filters. Finally, we may
wish to change display scaling from, say, 10 dB/div
to 1 dB/div or linear.

1 Except to the extent that dynamic range is affected. See dynamic range.
2 Generally, frequency response is defined as half the peak-to-peak response.
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A factor in measurement uncertainty not covered
in the table is impedance mismatch. Analyzers do
not have perfect input impedances, nor do most
signal sources have ideal output impedances.
However, in most cases uncertainty due to mis-
match is relatively small. Improving the match of
either the source or analyzer reduces uncertainty.
Since an analyzer’s match is worst with its input
attenuator set to 0 dB, we should avoid the 0-dB
setting if we can. If need be, we can attach a well-
matched pad (attenuator) to the analyzer input
and so effectively remove mismatch as a factor.

Absolute accuracy

The last item in table 1 is the calibrator, which
gives the spectrum analyzer its absolute calibra-
tion. For convenience, calibrators are typically
built into today’s spectrum analyzers and provide
a signal with a specified amplitude at a given fre-
quency. We then rely on the relative accuracy of
the analyzer to translate the absolute calibration to
other frequencies and amplitudes.

Improving overall uncertainty

If we are looking at measurement uncertainty for
the first time, we may well be concerned as we
mentally add up the uncertainty figures. And even
though we tell ourselves that these are worst-case
values and that almost never are all factors at their
worst and in the same direction at the same time,
still we must add the figures directly if we are to
certify the accuracy of a specific measurement.

There are some things that we can do to improve
the situation. First of all, we should know the spec-
ifications for our particular spectrum analyzer.
These specifications may be good enough over the
range in which we are making our measurement. If
not, table 1 suggests some opportunities to
improve accuracy.

Before taking any data, we can step through a
measurement to see if any controls can be left
unchanged. We might find that a given RF attenua-
tor setting, a given resolution bandwidth, and a
given display scaling suffice for the measurement.
If so, all uncertainties associated with changing
these controls drop out. We may be able to trade
off IF attenuation against display fidelity, using
whichever is more accurate and eliminating the
other as an uncertainty factor. We can even get
around frequency response if we are willing to go
to the trouble of characterizing our particular ana-
lyzer1. The same applies to the calibrator. If we
have a more accurate calibrator, or one closer to
the frequency of interest, we may wish to use that
in lieu of the built-in calibrator.

Finally, many analyzers available today have self-
calibration routines. These routines generate error
coefficients (for example, amplitude changes ver-
sus resolution bandwidth) that the analyzer uses
later to correct measured data. The smaller values
shown in table 1, 0.5 dB for display fidelity and 
0.1 dB for changes in IF attenuation, resolution
bandwidth, and display scaling, are based on cor-
rected data. As a result, these self-calibration rou-
tines allow us to make good amplitude measure-
ments with a spectrum analyzer and give us more
freedom to change controls during the course of a
measurement.

1 Should we do so, then mismatch may become a more significant factor.
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Sensitivity

One of the primary uses of a spectrum analyzer is
to search out and measure low-level signals. The
ultimate limitation in these measurements is the
random noise generated by the spectrum analyzer
itself. This noise, generated by the random electron
motion throughout the various circuit elements, is
amplified by the various gain stages in the analyz-
er and ultimately appears on the display as a noise
signal below which we cannot make measurements.
A likely starting point for noise seen on the display
is the first stage of gain in the analyzer. This ampli-
fier boosts the noise generated by its input termi-
nation plus adds some of its own. As the noise sig-
nal passes on through the system, it is typically
high enough in amplitude that the noise generated
in subsequent gain stages adds only a small
amount to the noise power. It is true that the input
attenuator and one or more mixers may be
between the input connector of a spectrum analyz-
er and the first stage of gain, and all of these com-
ponents generate noise. However, the noise that
they generate is at or near the absolute minimum
of –174 dBm/Hz (kTB), the same as at the input
termination of the first gain stage, so they do not
significantly affect the noise level input to, and
amplified by, the first gain stage.

While the input attenuator, mixer, and other circuit
elements between the input connector and first
gain stage have little effect on the actual system
noise, they do have a marked effect on the ability
of an analyzer to display low-level signals because
they attenuate the input signal. That is, they
reduce the signal-to-noise ratio and so degrade
sensitivity.

We can determine sensitivity simply by noting the
noise level indicated on the display with no input
signal applied. This level is the analyzer’s own
noise floor. Signals below this level are masked by
the noise and cannot be seen or measured.
However, the displayed noise floor is not the actual
noise level at the input but rather the effective
noise level. An analyzer display is calibrated to
reflect the level of a signal at the analyzer input, so
the displayed noise floor represents a fictitious
(we have called it an effective) noise floor at the
input below which we cannot make measurements.
The actual noise level at the input is a function of
the input signal. Indeed, noise is sometimes the
signal of interest. Like any discrete signal, a noise
signal must be above the effective (displayed) noise
floor to be measured. The effective input noise
floor includes the losses (attenuation) of the input
attenuator, mixer(s), etc., prior to the first gain
stage.

We cannot do anything about the conversion loss
of the mixers, but we do have control over the RF
input attenuator. By changing the value of input
attenuation, we change the attenuation of the
input signal and so change the displayed signal-to-
noise-floor ratio, the level of the effective noise
floor at the input of the analyzer, and the sensitivi-
ty. We get the best sensitivity by selecting mini-
mum (zero) RF attenuation.
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Different analyzers handle the change of input
attenuation in different ways. Because the input
attenuator has no effect on the actual noise gener-
ated in the system, some analyzers simply leave
the displayed noise at the same position on the
display regardless of the input-attenuator setting.
That is, the IF gain remains constant. This being
the case, the input attenuator will affect the loca-
tion of a true input signal on the display. As we
increase input attenuation, further attenuating the
input signal, the location of the signal on the dis-
play goes down while the noise remains stationary.
To maintain absolute calibration so that the actual
input signal always has the same reading, the ana-
lyzer changes the indicated reference level (the
value of the top line of the graticule). This design
is used in older Agilent analyzers.

In newer Agilent analyzers, starting with the
8568A, an internal microprocessor changes the IF
gain to offset changes in the input attenuator.
Thus, true input signals remain stationary on the
display as we change the input attenuator, while
the displayed noise moves up and down. In this
case, the reference level remains unchanged. See
figures 41 and 42. In either case, we get the best
signal-to-noise ratio (sensitivity) by selecting mini-
mum input attenuation.

Resolution bandwidth also affects signal-to-noise
ratio, or sensitivity. The noise generated in the
analyzer is random and has a constant amplitude
over a wide frequency range. Since the resolution,
or IF, bandwidth filters come after the first gain
stage, the total noise power that passes through
the filters is determined by the width of the filters.
This noise signal is detected and ultimately reach-
es the display. The random nature of the noise sig-
nal causes the displayed level to vary as:

10*log(bw2/bw1),
where bw1 = starting resolution bandwidth and

bw2 = ending resolution bandwidth.

Figure 41. Some spectrum analyzers change reference level when RF
attenuator is changed, so an input signal moves on the display, but the
analyzer’s noise does not

Figure 42. Other analyzers keep reference level constant by changing IF
gain, so as RF attenuator is changed, the analyzer’s noise moves, but an
input signal does not
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So if we change the resolution bandwidth by a fac-
tor of 10, the displayed noise level changes by 10
dB1, as shown in figure 43. We get best signal-to-
noise ratio, or best sensitivity, using the minimum
resolution bandwidth available in our spectrum
analyzer.

A spectrum analyzer displays signal plus noise,
and a low signal-to-noise ratio makes the signal
difficult to distinguish. We noted above that the
video filter can be used to reduce the amplitude
fluctuations of noisy signals while at the same time
having no effect on constant signals. Figure 44
shows how the video filter can improve our ability
to discern low-level signals. It should be noted that
the video filter does not affect the average noise
level and so does not, strictly speaking, affect the
sensitivity of an analyzer.

In summary, we get best sensitivity by selecting the
minimum resolution bandwidth and minimum
input attenuation. These settings give us best sig-
nal-to-noise ratio. We can also select minimum
video bandwidth to help us see a signal at or close
to the noise level2. Of course, selecting narrow res-
olution and video bandwidths does lengthen the
sweep time.

Noise figure

Many receiver manufacturers specify the perfor-
mance of their receivers in terms of noise figure
rather than sensitivity. As we shall see, the two
can be equated. A spectrum analyzer is a receiver,
and we shall examine noise figure on the basis of a
sinusoidal input.

Noise figure can be defined as the degradation of
signal-to-noise ratio as a signal passes through a
device, a spectrum analyzer in our case. We can
express noise figure as:

F = (Si/Ni)/(So/No),
where F = noise figure as power ratio,

Si = input signal power,
Ni = true input noise power,
So = output signal power, and
No = output noise power.

Figure 43. Displayed noise level changes as 10*log(BW2/BW1)

Figure 44. Video filtering makes low-level signals more discernable.
(The average trace was offset for visibility.)

If we examine this expression, we can simplify it
for our spectrum analyzer. First of all, the output
signal is the input signal times the gain of the ana-
lyzer. Second, the gain of our analyzer is unity
because the signal level at the output (indicated on
the display) is the same as the level at the input
(input connector). So our expression, after substi-
tution, cancellation, and rearrangement, becomes:

F = No/Ni

This expression tells us that all we need to do to
determine the noise figure is compare the noise
level as read on the display to the true (not the
effective) noise level at the input connector. Noise
figure is usually expressed in terms of dB, or:

NF = 10*log(F) = 10*log(No) - 10*log(Ni).

1 Not always true for the analyzer’s own noise because of the way IF step gain and filter poles are distributed throughout the IF chain. However, the relationship 
does hold true when the noise is the external signal being measured.

2 For the effect of noise on accuracy, see measurement uncertainty under dynamic range.
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We use the true noise level at the input rather than
the effective noise level because our input signal-
to-noise ratio was based on the true noise. Now we
can obtain the true noise at the input simply by
terminating the input in 50 ohms. The input noise
level then becomes:

Ni = kTB,

where k = Boltzmann’s constant, 
T = absolute temperature in degrees Kelvin, 
and 
B = bandwidth.

At room temperature and for a 1-Hz bandwidth,

kTB = –174 dBm.

We know that the displayed level of noise on the
analyzer changes with bandwidth. So all we need
to do to determine the noise figure of our spec-
trum analyzer is to measure the noise power in
some bandwidth, calculate the noise power that we
would have measured in a 1-Hz bandwidth using
10*log(bw2/bw1), and compare that to –174 dBm.
For example, if we measured –110 dBm in a 
10-kHz resolution bandwidth, we would get:

NF = 
(measured noise)dBm/RBW – 10*log(RBW/1) – kTBB=1

= –110 dBm – 10*log(10,000/1) – (–174 dBm) 
= –110 – 40 + 174 
= 24 dB.

Noise figure is independent of bandwidth1. Had we
selected a different resolution bandwidth, our
results would have been exactly the same. For
example, had we chosen a 1-kHz resolution 
bandwidth, the measured noise would have been
–120 dBm and 10*log(RBW/1) would have been 
30. Combining all terms would have given 
–120 – 30 + 174 = 24 dB, the same noise figure as
above.

The 24-dB noise figure in our example tells us that
a sinusoidal signal must be 24 dB above kTB to be
equal to the average displayed noise on this partic-
ular analyzer. Thus we can use noise figure to
determine sensitivity for a given bandwidth or to
compare sensitivities of different analyzers on the
same bandwidth2. 

Preamplifiers

One reason for introducing noise figure is that it
helps us determine how much benefit we can
derive from the use of a preamplifier. A 24-dB
noise figure, while good for a spectrum analyzer, is
not so good for a dedicated receiver. However, by
placing an appropriate preamplifier in front of the
spectrum analyzer, we can obtain a system (pream-
plifier/spectrum analyzer) noise figure that is
lower than that of the spectrum analyzer alone. To
the extent that we lower the noise figure, we also
improve the system sensitivity.

When we introduced noise figure above, we did so
on the basis of a sinusoidal input signal. We shall
examine the benefits of a preamplifier on the same
basis. However, a preamplifier also amplifies noise,
and this output noise can be higher than the effec-
tive input noise of the analyzer. As we shall see in
the Noise as a Signal section below, a spectrum
analyzer displays a random noise signal 2.5 dB
below its actual value. As we explore preamplifiers,
we shall account for this 2.5-dB factor where
appropriate.

1 This may not be precisely true for a given analyzer because of the way resolution filter sections and gain are distributed in the IF chain.
2 The noise figure computed in this manner cannot be compared directly to that of a receiver or amplifier because the "measured noise" term in the equation 

understates the actual noise by 2.5 dB. See noise as a signal.
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Rather than develop a lot of formulas to see what
benefit we get from a preamplifier, let us look at
two extreme cases and see when each might apply.
First, if the noise power out of the preamplifier (in
a bandwidth equal to that of the spectrum analyz-
er) is at least 15 dB higher than the displayed 
average noise level (noise floor) of the spectrum
analyzer, then the noise figure of the system is
approximately that of the preamplifier less 2.5 dB.
How can we tell if this is the case? Simply connect
the preamplifier to the analyzer and note what
happens to the noise on the CRT. If it goes up 15
dB or more, we have fulfilled this requirement.

On the other hand, if the noise power out of the
preamplifier (again, in the same bandwidth as that
of the spectrum analyzer) is 10 dB or more lower
than the average displayed noise level on the ana-
lyzer, then the noise figure of the system is that of
the spectrum analyzer less the gain of the pream-
plifier. Again we can test by inspection. Connect
the preamplifier to the analyzer; if the displayed
noise does not change, we have fulfilled the
requirement.

But testing by experiment means that we have the
equipment at hand. We do not need to worry about
numbers. We simply connect the preamplifier to
the analyzer, note the average displayed noise level
and subtract the gain of the preamplifier. Then we
have the sensitivity of the system.

What we really want is to know ahead of time what
a preamplifier will do for us. We can state the two
cases above as follows:

if NFPRE + GPRE ≥ NFSA + 15 dB,

then NFSYS = NFPRE – 2.5 dB,

and

if NFPRE+ GPRE ≤ NFSA – 10 dB,

then NFSYS = NFSA – GPRE.

Using these expressions, let’s see how a preampli-
fier affects our sensitivity. Assume that our spec-
trum analyzer has a noise figure of 24 dB and the
preamplifier has a gain of 36 dB and a noise figure
of 8 dB. All we need to do is to compare the gain
plus noise figure of the preamplifier to the noise
figure of the spectrum analyzer. The gain plus
noise figure of the preamplifier is 44 dB, more
than 15 dB higher than the noise figure of the
spectrum analyzer, so the noise figure of the pre-
amplifier/spectrum-analyzer combination is that of
the preamplifier less 2.5 dB, or 5.5 dB. In a 10-kHz
resolution bandwidth our preamplifier/analyzer
system has a sensitivity of:

kTBB=1 + 10*log(RBW/1) + NFSYS

= –174 dBm + 40 dB + 5.5 dB 
= –128.5 dBm.

This is an improvement of 18.5 db over the 
–110 dBm noise floor without the preamplifier.

Is there any drawback to using this preamplifier?
That depends upon our ultimate measurement
objective. If we want the best sensitivity but no
loss of measurement range, then this preamplifier
is not the right choice. Figure 45 illustrates this
point. A spectrum analyzer with a 24-dB noise fig-
ure will have an average displayed noise level of
–110 dBm in a 10-kHz resolution bandwidth. If the
1-dB compression point1 for that analyzer is 
–10 dBm, the measurement range is 100 dB. When
we connect the preamplifier, we must reduce the
maximum input to the system by the gain of the
pre-amplifier to –46 dBm. However, when we con-
nect the preamplifier, the noise as displayed on the
CRT will rise by about 17.5 dB because the noise
power out of the preamplifier is that much higher
than the analyzer’s own noise floor, even after
accounting for the 2.5-dB factor. It is from this
higher noise level that we now subtract the gain of
the preamplifier. With the preamplifier in place,
our measurement range is 82.5 dB, 17.5 dB less
than without the preamplifier. The loss in mea-
surement range equals the change in the displayed
noise when the preamplifier is connected.

1 See mixer compression (page 41).
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Figure 45. If the displayed noise goes up when a preamplifier is con-
nected, measurement range is diminished by the amount the noise
changes

Is there a preamplifier that will give us better sen-
sitivity without costing us measurement range?
Yes. But it must meet the second of the above crite-
ria; that is, the sum of its gain and noise figure
must be at least 10 dB less than the noise figure of
the spectrum analyzer. In this case the displayed
noise floor will not change noticeably when we
connect the preamplifier, so although we shift the
whole measurement range down by the gain of the
preamplifier, we end up with the same overall
range that we started with.

To choose the correct preamplifier, we must look
at our measurement needs. If we want absolutely
the best sensitivity and are not concerned about
measurement range, we would choose a high-gain,
low-noise-figure preamplifier so that our system
would take on the noise figure of the preamplifier
less 2.5 dB. If we want better sensitivity but cannot
afford to give up any measurement range, we must
choose a lower-gain preamplifier.

Interestingly enough, we can use the input attenua-
tor of the spectrum analyzer to effectively degrade
its the noise figure (or reduce the gain of the pre-
amplifier, if you prefer). For example, if we need
slightly better sensitivity but cannot afford to give
up any measurement range, we can use the above
preamplifier with 30 dB of RF input attenuation on
the spectrum analyzer. This attenuation increases
the noise figure of the analyzer from 24 to 54 dB.
Now the gain plus noise figure of the preamplifier
(36 + 8) is 10 dB less than the noise figure of the
analyzer, and we have met the conditions of the
second criterion above. The noise figure of the sys-
tem is now: NFsys = NFSA – GPRE= 54 dB – 36 dB =
18 dB, a 6-dB improvement over the noise figure of

the analyzer alone with 0 dB of input attenuation.
So we have improved sensitivity by 6 dB and given
up virtually no measurement range.

Of course, there are preamplifiers that fall in
between the extremes. Figure 46 enables us to
determine system noise figure from a knowledge of
the noise figures of the spectrum analyzer and pre-
amplifier and the gain of the amplifier. We enter
the graph of figure 46 by determining NFPRE +
GPRE – NFSA. If the value is less than zero, we find
the corresponding point on the dashed curve and
read system noise figure as the left ordinate in
terms of dB above NFSA – GPRE. If NFPRE + GPRE –
NFSA is a positive value, we find the corresponding
point on the solid curve and read system noise fig-
ure as the right ordinate in terms of dB above
NFPRE.

Figure 46. System noise figure for sinusoidal signals
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Let’s first test the two extreme cases from above.
As NFPRE + GPRE – NFSA becomes less than 
–10 dB, we find that system noise figure asymptot-
ically approaches NFSA – GPRE. As the value
becomes greater than +15 dB, system noise figure
asymptotically approaches NFPRE less 2.5 dB. Next,
let’s try two numerical examples. Above, we deter-
mined that the noise figure of our analyzer is 
24 dB. What would the system noise figure be if we
add an Agilent 8447D, a preamplifier with a noise
figure of about 8 dB and a gain of 26 dB? First,
NFPRE + GPRE – NFSA is +10 dB. From the graph of
figure 46 we find a system noise figure of about
NFPRE – 1.8 dB, or about 8 – 1.8 = 6.2 dB. The
graph accounts for the 2.5-dB factor. On the other
hand, if the gain of the preamplifier is just 10 dB,
then NFPRE + GPRE – NFSA is –6 dB. This time the
graph indicates a system noise figure of NFSA –
GPRE + 0.6 dB, or 24 – 10 + 0.6 = 14.6 dB.1 (We did
not introduce the 2.5-dB factor above when we
determined the noise figure of the analyzer alone
because we read the measured noise directly from
the display. The displayed noise included the 
2.5-dB factor.)

Noise as a signal

So far, we have limited our concern with noise to
the noise generated within the measurement sys-
tem - analyzer or analyzer/preamplifier. We
described sensitivity in terms of the smallest sinu-
soidal signal that we could measure: one that is
equal to the displayed average noise level.

However, random noise is sometimes the signal
that we want to measure. Because of the nature of
noise, the superheterodyne spectrum analyzer
indicates a value that is lower than the actual
value of the noise. Let’s see why this is so and how
we can correct for it.

By random noise, we mean a signal whose instan-
taneous amplitude has a Gaussian distribution
versus time, as shown in figure 47. For example,
thermal or Johnson noise has this characteristic.
Such a signal has no discrete spectral components,
so we cannot select some particular component
and measure it to get an indication of signal
strength. In fact, we must define what we mean by
signal strength. If we sample the signal at an arbi-
trary instant, we could theoretically get any ampli-
tude value. We need some measure that expresses
the noise level averaged over time. Power and rms
voltage both satisfy that requirement.

We have already seen that both video filtering and
video averaging reduce the peak-to-peak fluctua-
tions of a signal and can give us a steady value. We
must equate this value to either power or rms volt-
age. The rms value of a Gaussian distribution
equals its standard deviation, σ.

Figure 47. Random noise has a Gaussian amplitude distribution

1 For more details on noise figure, see Application Note 57-1, "Fundamentals of RF and Microwave Noise Figure Measurements," (literature number 5952-8255E). 
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Let’s start with our analyzer in the linear display
mode. The Gaussian noise at the input is band lim-
ited as it passes through the IF chain, and its enve-
lope takes on a Rayleigh distribution (figure 48).
The noise that we see on our analyzer display, the
output of the envelope detector, is the Rayleigh-
distributed envelope of the input noise signal. To
get a steady value, the mean value, we use video
filtering or averaging. The mean value of a
Rayleigh distribution is 1.253σ.

But our analyzer is a peak-responding voltmeter
calibrated to indicate the rms value of a sine wave.
To convert from peak to rms, our analyzer scales
its readout by 0.707 (–3 dB). The mean value of the
Rayleigh-distributed noise is scaled by the same
factor, giving us a reading that is 0.886σ (l.05 dB
below σ). To equate the mean value displayed by
the analyzer to the rms voltage of the input noise
signal, then, we must account for the error in the
displayed value. Note, however, that the error is
not an ambiguity; it is a constant error that we can
correct for by adding 1.05 dB to the displayed
value.

Normally, we use our analyzer in the log display
mode, and this mode adds to the error in our noise
measurement. The gain of a log amplifier is a func-
tion of signal amplitude, so the higher noise values
are not amplified as much as the lower values. As
a result, the output of the envelope detector is a
skewed Rayleigh distribution, and the mean value
that we get from video filtering or averaging is
another 1.45 dB lower. In the log mode, then, the
mean or average noise is displayed 2.5 dB too low.
Again, this error is not an ambiguity, and we can
correct for it.

This is the 2.5-dB factor that we accounted for in
the preamplifier discussion above whenever the
noise power out of the preamplifier was approxi-
mately equal to or greater than the analyzer’s own
noise.

Figure 48. The envelope of band-limited Gaussian noise has a Rayleigh
distribution

Another factor that affects noise measurements is
the bandwidth in which the measurement is made.
We have seen how changing resolution bandwidth
affects the displayed level of the analyzer's inter-
nally generated noise. Bandwidth affects external
noise signals in the same way. To compare mea-
surements made on different analyzers, then, we
must know the bandwidths used in each case.

Not only does the 3-dB (or 6-dB) bandwidth of the
analyzer affect the measured noise level, the shape
of the resolution filter also plays a role. To make
comparisons possible, we define a standard noise-
power bandwidth: the width of a rectangular filter
that passes the same noise power as our analyzer’s
filter. For the near-Gaussian filters in Agilent ana-
lyzers, the equivalent noise-power bandwidth is
about 1.05 to 1.13 times the 3-dB bandwidth,
depending on bandwidth selectivity. For example,
a 10-kHz resolution bandwidth filter has a noise-
power bandwidth in the range of 10.5 to 11.3 kHz.
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If we use 10*log(bw2/bw1) to adjust the displayed
noise level to what we would have measured in a
noise power bandwidth of the same numeric value
as our 3-dB bandwidth, we find that the adjust-
ment varies from:

10*log(10,000/10,500) = –0.21 dB to 
10*log(10,000/11,300) = –0.53 dB.

In other words, if we subtract something between
0.21 and 0.53 dB from the indicated noise level, we
shall have the noise level in a noise-power band-
width that is convenient for computations.

Let’s consider all three factors and calculate a
total correction:

Rayleigh distribution (linear mode): 1.05 dB 
Log amplifier (log mode): 1.45 dB

3-dB/noise power bandwidths: –0.5 dB
--------------

Total correction: 2.0 dB

Here we use –0.5 dB as a reasonable compromise
for the bandwidth correction. The total correction
is thus a convenient value.

Many of today’s microprocessor-controlled analyz-
ers allow us to activate a noise marker. When we
do so, the microprocessor switches the analyzer
into the sample display mode, computes the mean
value of the 32 display points about the marker,
adds the above 2-dB amplitude correction, normal-
izes the value to a 1-Hz noise-power bandwidth,
and displays the normalized value.1

The analyzer does the hard part. It is reasonably
easy to convert the noise-marker value to other
bandwidths. For example, if we want to know the
total noise in a 4-MHz communication channel, we
add 66 dB to the noise-marker value (60 dB for the
1,000,000/1 and another 6 dB for the additional
factor of four).

Preamplifier for noise measurements

Since noise signals are typically low-level signals,
we often need a preamplifier to have sufficient
sensitivity to measure them. However, we must
recalculate sensitivity of our analyzer first. Above,
we defined sensitivity as the level of a sinusoidal
signal that is equal to the displayed average noise
floor. Since the analyzer is calibrated to show the
proper amplitude of a sinusoid, no correction for
the signal was needed. But noise is displayed 2.5
dB too low, so an input noise signal must be 2.5 dB
above the analyzer’s displayed noise floor to be at
the same level by the time it reaches the display.
The input and internal noise signals add to raise
the displayed noise by 3 dB, a factor of two in
power. So we can define the noise figure of our
analyzer for a noise signal as:

NFSA(N) = (noise floor)dBm/RBW – 10*log(RBW/1) – 
kTBB=1 + 2.5 dB.

If we use the same noise floor as above, –110 dBm
in a 10-kHz resolution bandwidth, we get:

NFSA(N) = –110 dBm – 10*log(10,000/1) – 
(174 dBm) + 2.5 dB = 26.5 dB.

As was the case for a sinusoidal signal, NFSSA(N) is
independent of resolution bandwidth and tells us
how far above kTB a noise signal must be to be
equal to the noise floor of our analyzer.

When we add a preamplifier to our analyzer, the
system noise figure and sensitivity improve.
However, we have accounted for the 2.5-dB factor
in our definition of NF SAMI so the graph of sys-
tem noise figure becomes that of figure 49. We
determine system noise figure for noise the same
way that we did for a sinusoidal signal above.

Figure 49. System noise figure for noise signals

1 The ESA-E family computes the mean over half a division, regardless of the number of display points.
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Dynamic range

Definition

Dynamic range is generally thought of as the abili-
ty of an analyzer to measure harmonically related
signals and the interaction of two or more signals;
for example, to measure second- or third-harmonic
distortion or third-order intermodulation. In deal-
ing with such measurements, remember that the
input mixer of a spectrum analyzer is a non-linear
device and so always generates distortion of its
own. The mixer is non-linear for a reason. It must
be nonlinear to translate an input signal to the
desired IF. But the unwanted distortion products
generated in the mixer fall at the same frequencies
as do the distortion products we wish to measure
on the input signal.

So we might define dynamic range in this way: it is
the ratio, expressed in dB, of the largest to the
smallest signals simultaneously present at the
input of the spectrum analyzer that allows mea-
surement of the smaller signal to a given degree of
uncertainty.

Notice that accuracy of the measurement is part of
the definition. We shall see how both internally
generated noise and distortion affect accuracy
below.

Dynamic range versus internal distortion

To determine dynamic range versus distortion, we
must first determine just how our input mixer
behaves. Most analyzers, particularly those utiliz-
ing harmonic mixing to extend their tuning range1,
use diode mixers. (Other types of mixers would
behave similarly.) The current through an ideal
diode can be expressed as:

i = Is(eqv/kT–1),
where q = electronic charge,

v = instantaneous voltage,
k = Boltzmann’s constant, and
T = temperature in degrees Kelvin.

We can expand this expression into a power series:
i = Is(k1v + k2v2 + k3v3 +…),

where k1 = q/kT 
k2 = k1

2/2!, 
k3 = k1

3!, etc.
Let’s now apply two signals to the mixer. One will
be the input signal that we wish to analyze; the
other, the local oscillator signal necessary to cre-
ate the IF: 

v = VLOsin(wLOt) + V1sin(w1t).

If we go through the mathematics, we arrive at the
desired mixing product that, with the correct LO
frequency, equals the IF: 

k2VLOV1cos[(wLO – w1)t].

A k2VLOV1cos[(wLO + w1)t] term is also generated,
but in our discussion of the tuning equation, we
found that we want the LO to be above the IF, so
(wLO + w1) is also always above the IF.

With a constant LO level, the mixer output is lin-
early related to the input signal level. For all prac-
tical purposes, this is true as long as the input 
signal is more than 15 to 20 dB below the level of
the LO. There are also terms involving harmonics
of the input signal:

(3k3/4)VLOV1
2sin(wLO - 2w1)t, 

(k4 /8)VLOV1
3sin(wLO - 3w1)t, etc.

1 See Chapter 3.
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These terms tell us that dynamic range due to
internal distortion is a function of the input signal
level at the input mixer. Let’s see how this works,
using as our definition of dynamic range the differ-
ence in dB between the fundamental tone and the
internally generated distortion.

The argument of the sine in the first term includes
2w1, so it represents the second harmonic of the
input signal. The level of this second harmonic is a
function of the square of the voltage of the funda-
mental, V1

2. This fact tells us that for every dB that
we drop the level of the fundamental at the input
mixer, the internally generated second harmonic
drops by 2 dB. See figure 50. The second term
includes 3w1, the third harmonic, and the cube of
the input-signal voltage, V1

3. So a 1-dB change in
the fundamental at the input mixer changes the
internally generated third harmonic by 3 dB.

Distortion is often described by its order. The
order can be determined by noting the coefficient
associated with the signal frequency or the expo-
nent associated with the signal amplitude. Thus
second-harmonic distortion is second order and
third harmonic distortion is third order. The order
also indicates the change in internally generated
distortion relative to the change in the fundamen-
tal tone that created it.

Now let us add a second input signal:

v = VLOsin(wLOt) + V1sin(w1t) + V2sin(w2t).

This time when we go through the math to find
internally generated distortion, in addition to har-
monic distortion, we get:

(k4/8)VLOV1
2V2cos[wLO - (2w1 - w2)]t,

(k4/8)VLOV1V2
2cos[wLO - (2w2 – w1)]t, etc.

Figure 50. Changing the level of fundamental tone (w) or tones (w1, w2)
at the mixer affects internally generated distortion

These represent intermodulation distortion, the
interaction of the two input signals with each
other. The lower distortion product, 2w1 – w2, falls
below w1 by a frequency equal to the difference
between the two fundamental tones, w2 – w1. The
higher distortion product, 2w2 – w1, falls above w2
by the same frequency. See figure 50.

Once again, dynamic range is a function of the
level at the input mixer. The internally generated
distortion changes as the product of V1

2 and V2 in
the first case, of V1 and V2

2 in the second. If V1
and V2 have the same amplitude, the usual case
when testing for distortion, we can treat their
products as cubed terms (V1

3 or V2
3). Thus, for

every dB that we simultaneously change the level
of the two input signals, there is a 3-dB change in
the distortion components as shown in figure 50.

This is the same degree of change that we saw for
third harmonic distortion above. And in fact, this,
too, is third-order distortion. In this case, we can
determine the degree of distortion by summing the
coefficients of w1 and w2 (e.g., 2w1 – 1w2 yields 
2 + 1 = 3) or the exponents of V1 and V2.

All this says that dynamic range depends upon the
signal level at the mixer. How do we know what
level we need at the mixer for a particular 
measurement? Many analyzer data sheets now
include graphs to tell us how dynamic range
varies. However, if no graph is provided, we can
draw our own.
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We do need a starting point, and this we must get
from the data sheet. We shall look at second-order
distortion first. Let’s assume the data sheet says
that second-harmonic distortion is 70 dB down for
a signal –40 dBm at the mixer. Because distortion
is a relative measurement, and, at least for the
moment, we are calling our dynamic range the dif-
ference in dB between fundamental tone or tones
and the internally generated distortion, we have
our starting point. Internally generated second-
order distortion is 70 dB down, so we can measure
distortion down 70 dB. We plot that point on a
graph whose axes are labeled distortion (dBc) ver-
sus level at the mixer (level at the input connector
minus the input-attenuator setting). See figure 51.
What happens if the level at the mixer drops to 
–50 dBm? As noted in figure 50, for every dB
change in the level of the fundamental at the mixer
there is a 2-dB change in the internally generated
second harmonic. But for measurement purposes,
we are only interested in the relative change, that
is, in what happened to our measurement range. In
this case, for every dB that the fundamental
changes at the mixer, our measurement range also
changes by 1 dB. In our second-harmonic example,
then, when the level at the mixer changes from –40
to –50 dBm, the internal distortion, and thus our
measurement range, changes from –70 to –80 dBc.
In fact, these points fall on a line with a slope of 1
that describes the dynamic range for any input
level at the mixer.

We can construct a similar line for third-order dis-
tortion. For example, a data sheet might say third-
order distortion is –70 dBc for a level of –30 dBm
at this mixer. Again, this is our starting point, and
we would plot the point shown in figure 51. If we
now drop the level at the mixer to –40 dBm, what
happens? Referring again to figure 50, we see that
both third-harmonic distortion and third-order
intermodulation distortion fall by 3 dB for every
dB that the fundamental tone or tones fall. Again
it is the difference that is important. If the level at
the mixer changes from –30 to –40 dBm, the differ-
ence between fundamental tone or tones and inter-
nally generated distortion changes by 20 dB. So
the internal distortion is –90 dBc. These two
points fall on a line having a slope of 2, giving us
the third-order performance for any level at the
mixer.

Figure 51. Dynamic range versus distortion and noise

Sometimes third-order performance is given as TOI
(Third Order Intercept). This is the mixer level at
which the internally generated third-order distor-
tion would be equal to the fundamental(s), or 0
dBc. This situation cannot be realized in practice
because the mixer would be well into saturation.
However, from a mathematical standpoint TOI is a
perfectly good data point because we know the
slope of the line. So even with TOI as a starting
point, we can still determine the degree of inter-
nally generated distortion at a given mixer level.

We can calculate TOI from data-sheet information.
Because third-order dynamic range changes 2 dB
for every dB change in the level of the fundamen-
tal tone(s) at the mixer, we get TOI by subtracting
half of the specified dynamic range in dBc from
the level of the fundamental(s):

TOI = 1fund – d/2,

where 1fund = level of the fundamental in dBm 
and 

d = difference in dBc between 
fundamental and distortion.

Using the values from the discussion above:

TOI = –30 dBm – (–70 dBc)/2 = +5 dBm.
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Attenuator test

Understanding the distortion graph is important,
but we can use a simple test to determine whether
displayed distortion components are true input
signals or internally generated signals. Change the
input attenuator. If the displayed value of the dis-
tortion components remains the same, the compo-
nents are part of the input signal. If the displayed
value changes, the distortion components are gen-
erated internally or are the sum of external and
internally generated signals. We continue changing
the attenuator until the displayed distortion does
not change and then complete the measurement.

Noise

There is another constraint on dynamic range, and
that is the noise floor of our spectrum analyzer.
Going back to our definition of dynamic range as
the ratio of the largest to the smallest signal that
we can measure, the average noise of our spectrum
analyzer puts the limit on the smaller signal. So
dynamic range versus noise becomes signal-to-
noise ratio in which the signal is the fundamental
whose distortion we wish to measure.

So how do we plot noise on our dynamic range
chart? Using the same numbers for sensitivity that
we used earlier (24-dB noise figure), we would cal-
culate an average noise level of –110 dBm in a 
10-kHz resolution bandwidth. If our signal funda-
mental has a level of -40 dBm at the mixer, it is 
70 dB above the average noise, so we have 70 dB
signal-to-noise ratio. For every dB that we reduce
the signal level at the mixer, we lose 1 dB of signal-
to-noise ratio. Our noise curve is a straight line
having a slope of –1, as shown in figure 51.

Under what conditions, then, do we get the best
dynamic range? Without regard to measurement
accuracy, it would be at the intersection of the
appropriate distortion curve and the noise curve.
Figure 51 tells us that our maximum dynamic
range for second-order distortion is 70 dB; for
third-order distortion, 77 dB.

Figure 51 shows the dynamic range for one resolu-
tion bandwidth. We certainly can improve dynamic
range by narrowing the resolution bandwidth, but
there is not a one-to-one correspondence between
the lowered noise floor and the improvement in
dynamic range. For second-order distortion the
improvement is one half the change in the noise
floor; for third-order distortion, two-thirds the
change in the noise floor. See figure 52.

Figure 52. Reducing resolution bandwidth improves dynamic range

The final factor in dynamic range is the phase
noise on our spectrum analyzer LO, and this
affects only third-order distortion measurements.
For example, suppose we are making a two-tone,
third-order distortion measurement on an amplifi-
er, and our test tones are separated by 10 kHz. The
third-order distortion components will be separat-
ed from the test tones by 10 kHz also. For this
measurement we might find ourselves using a 
1-kHz resolution bandwidth. Referring to figure 52
and allowing for a 10-dB decrease in the noise
curve, we would find a maximum dynamic range of
about 84 dB. However, what happens if our phase
noise at a 10-kHz offset is only –75 dBc? Then 
75 dB becomes the ultimate limit of dynamic range
for this measurement, as shown in figure 53.

Figure 53. Phase noise can limit third-order intermodulation tests

In summary, the dynamic range of a spectrum ana-
lyzer is limited by three factors: the distortion per-
formance of the input mixer, the broadband noise
floor (sensitivity) of the system, and the phase
noise of the local oscillator.



40

Dynamic range versus 
measurement uncertainty 

In our previous discussion of amplitude accuracy,
we included only those items listed in table 1 plus
mismatch. We did not cover the possibility of an
internally generated distortion product (a sinu-
soid) being at the same frequency as an external
signal that we wished to measure. However, inter-
nally generated distortion components fall at
exactly the same frequencies as the distortion com-
ponents we wish to measure on external signals.
The problem is that we have no way of knowing
the phase relationship between the external and
internal signals. So we can only determine a poten-
tial range of uncertainty:

Uncertainty (in dB) = 20*log(l ± 10d/20),

where d     = difference in dB between larger and 
smaller sinusoid (a negative number).

See figure 54. For example, if we set up conditions
such that the internally generated distortion is
equal in amplitude to the distortion on the incom-
ing signal, the error in the measurement could
range from +6 dB (the two signals exactly in
phase) to -infinity (the two signals exactly out of
phase and so canceling). Such uncertainty is unac-
ceptable in most cases. If we put a limit of 1 dB on
the measurement uncertainty, figure 54 shows us
that the internally generated distortion product
must be about 18 dB below the distortion product
that we wish to measure. To draw dynamic-range
curves for second- and third-order measurements
with no more than 1 dB of measurement error, we
must then offset the curves of figure 51 by 18 dB
as shown in figure 55.

Next let’s look at uncertainty due to low signal-to-
noise ratio. The distortion components we wish to
measure are, we hope, low-level signals, and often
they are at or very close to the noise level of our
spectrum analyzer. In such cases we often use the
video filter to make these low-level signals more
discernable. Figure 56 shows the error in displayed
signal level as a function of displayed signal-to-
noise for a typical spectrum analyzer. Note that the
error is only in one direction, so we could correct
for it. However, we usually do not. So for our
dynamic-range measurement, let's accept a 0.5-dB
error due to noise and offset the noise curve in our
dynamic-range chart by 5 dB as shown in figure
55. Where the distortion and noise curves inter-
sect, the maximum error possible would be less
than 1.5 dB.

Figure 54. Uncertainty versus difference in amplitude between two
sinusoids at the same frequency

Figure 55. Dynamic range for 1.5-dB maximum error

Figure 56. Error in displayed signal amplitude due to noise
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Let’s see what happened to our dynamic range as a
result of our concern with measurement error. As
figure 55 shows, second-order-distortion dynamic
range changes from 70 to 58.5 dB, a change of 
11.5 dB. This is one half the total offsets for the
two curves (18 dB for distortion; 5 dB for noise).
Third-order distortion changes from 77 dB to
about 68 dB for a change of about 9 dB. In this
case the change is one third of the 18-dB offset for
the distortion curve plus two thirds of the 5-dB
offset for the noise curve.

Mixer compression

In our discussion of dynamic range, we did not
concern ourselves with how accurately the larger
tone is displayed, even on a relative basis. As we
raise the level of a sinusoidal input signal, eventu-
ally the level at the input mixer becomes so high
that the desired output mixing product no longer
changes linearly with respect to the input signal.
The mixer is in saturation, and the displayed signal
amplitude is too low.

Saturation is gradual rather than sudden. To help
us stay away from the saturation condition, the
0.5-dB or 1-dB compression point is usually speci-
fied. A mixer level of –10 to –5 dBm is typical.
Thus we can determine what input attenuator set-
ting to use for accurate measurement of high-level
signals1.

Actually, there are three different methods of eval-
uating compression. The traditional method, called
CW compression, measures the change in gain of a
device (amplifier or mixer or system) as the input
signal power is swept upward. This method is the
one just described. Note that the CW compression
point is considerably higher than the levels for the
fundamentals indicated above for even moderate
dynamic range. So we were correct in not concern-
ing ourselves with the possibility of compression of
the larger signal(s).

A second method, called two-tone compression,
measures the change in system gain for a small sig-
nal while the power of a larger signal is swept
upward. Two-tone compression applies to the mea-
surement of multiple CW signals, such as side-
bands and independent signals. The threshold of
compression of this method is usually a few dB
lower than that of the CW method.

A final method, called pulse compression, mea-
sures the change in system gain to a narrow
(broadband) RF pulse while the power of the pulse
is swept upward. When measuring pulses, we often
use a resolution bandwidth much narrower than
the bandwidth of the pulse, so our analyzer dis-
plays the signal level well below the peak pulse
power. As a result, we could be unaware of the fact
that the total signal power is above the mixer com-
pression threshold. A high threshold improves sig-
nal-to-noise ratio for high-power, ultra-narrow or
widely chirped pulses. The threshold is about 
12 dB higher than for two-tone compression in the
Agilent 8560A, 8561A/B, and 8562A/B/C analyz-
ers. Nevertheless, because different compression
mechanisms affect CW, two-tone, and pulse com-
pression differently, any of the compression
thresholds can be lower than any other.

1 Many analyzers internally control the combined settings of the input attenuator and IF gain so that a cw as high as the compression level at the input mixer
creates a deflection above the top line of the graticule. Thus we cannot make incorrect measure-ments inadvertently.
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Display range and measurement range

There are two additional ranges that are often con-
fused with dynamic range: display range and mea-
surement range. Display range, often called display
dynamic range, refers to the calibrated amplitude
range of the CRT display. For example, a display
with eight divisions would seem to have an 80-dB
display range when we select 10 dB per division.
However, in most cases, as with Agilent, the bot-
tom division is not calibrated. The bottom line of
the graticule represents a signal amplitude of zero,
so the bottom division of the display covers the
range from –70 dB to infinity relative to the refer-
ence level (top line)1. The bottom division of ten-
division displays are also typically uncalibrated.
Another factor is the range of the log amplifier.
Typical ranges are 70 and 90 dB for analyzers with
eight and ten divisions, respectively. Some analyz-
ers do have log amplifiers, or use autoranging, to
utilize the full 10 divisions of their displays. The
Agilent ESA-E and 8560 families use a combina-
tion of digital signal processing and autoranging
for a full 100-dB display when we select one of the
digitally-implemented resolution bandwidths.

The question is, can the full display range be used?
From the discussion of dynamic range above, we
know that the answer is generally yes. In fact,
dynamic range often exceeds display range or log
amplifier range. What then? To bring the smaller
signals into the calibrated area of the display, we
must increase IF gain. But in so doing, we move
the larger signals off the top of the display, above
the reference level. In Agilent analyzers, we can
move signals at least 20 dB above the reference
level without affecting the accuracy with which the
smaller signals are displayed. So we can indeed
take advantage of the full dynamic range of an ana-
lyzer even when the dynamic range exceeds the
display range.

Measurement range is the ratio of the largest to
the smallest signal that can be measured under
any circumstances. The upper limit is determined
by the maximum safe input level, +30 dBm (1 watt)
for most analyzers. These analyzers have input
attenuators settable to 60 or 70 dB, so we can
reduce +30-dBm signals to levels well below the
compression point of the input mixer and measure
them accurately. Sensitivity sets the other end of
the range. Depending on the minimum resolution
bandwidth of the particular analyzer, sensitivity
typically ranges from –115 to –135 dBm.
Measurement range, then, can vary from 145 to
160 dB. Of course, we cannot view a –135 dBm sig-
nal while a +30 dBm signal is also present at the
input.

Frequency measurements

So far, we have focused almost exclusively on
amplitude measurements. What about frequency
measurements? Up until the late 1970s, absolute
frequency uncertainty was measured in megahertz
because the first LO was a high-frequency oscilla-
tor operating above the RF range of the analyzer,
and there was no attempt to tie the LO to a more
accurate reference oscillator. (An exception was
the Agilent 8580, an automatic spectrum analyzer
based on the Agilent 8555A, in which an external
synthesizer was substituted for the internal LO.
However, the cost of the system prevented its use
as a general -purpose analyzer.) Many analyzers of
this type are still available and in general use.
Examples are the Agilent 8590A and 8592A.

Absolute frequency uncertainty of even many
megahertz is not a hindrance in many cases. For
example, many times we are measuring an isolated
signal. Or we need just enough accuracy to be able
to identify the signal of interest among other sig-
nals. Absolute frequency is often listed under the
Frequency Readout Accuracy specification and
refers to center frequency and, for analyzers with
microprocessors and digital displays, start, stop,
and marker frequencies.

More important, usually, is relative frequency
uncertainty. How far apart are spectral compo-
nents? What is the modulation frequency? Here the
span accuracy comes into play. For Agilent analyz-
ers, span accuracy generally means the uncertain-
ty in the indicated separation of any two spectral
components on the display. For example, suppose
span accuracy is 3 percent and we have two sig-
nals separated by two divisions on a 1-MHz span
(100 kHz per division). The uncertainty of the sig-
nal separation would be 6 kHz. The uncertainty
would be the same if we used delta markers and
the delta reading was 200 kHz.

Span accuracy can be used to improve low-fre-
quency accuracy. How would we tune to a 100-kHz
signal on an analyzer having 5 MHz frequency
uncertainty? We can use the LO feed through (the
response created when the first LO sweeps past
the first IF) as a zero-frequency marker and the
span accuracy to locate the signal. The LO feed
through indicates 0 Hz with no error, and we can
place it at the left side of the display graticule with
a span of 200 kHz. Again assuming 3 percent span
accuracy, our signal should appear at the center of
the display ±0.15 divisions.

1 Because of the internally generated noise, analyzers always display some signal above the bottom line of the graticule on 10 dB/div and higher scale factors.
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With the introduction of the Agilent 8568A in
1978, counter-like frequency accuracy became
available in a general-purpose spectrum analyzer.
A low-drift, ovenized crystal oscillator was added
as a reference for all of the LOs in the instrument.
Over the years, crystal reference oscillators, some
ovenized, some not, have been added to analyzers
in all cost ranges.

A comment on stabilized oscillators: if we use the
broadest definition of indirect synthesis, that the
frequency of the oscillator in question is in some
way determined by a reference oscillator, then the
actual technique used is irrelevant. Phase lock, fre-
quency discrimination, counter lock all fall within
this definition of indirect synthesis.

What we really care about is the effect on frequen-
cy accuracy (and drift). A typical readout accuracy
might be stated as follows:

±[(freq readout x freq ref error) + A% of span + 
B% of RBW + C Hz].

Note that we cannot determine an exact frequency
error unless we know something about the fre-
quency reference. In some cases we are given an
annual aging rate (for example, ±2 x 10-6/year); in
others, aging over a shorter period (for example,
±5 x 10-10/day). In addition, we need to know
when the oscillator was last adjusted and how
close it was set to its nominal frequency (usually
10 MHz). Other factors that we often overlook
when we think about frequency accuracy are
whether or not the instrument was unplugged from
the power line before we use it (some reference
oscillators require 72 hours to reach their speci-
fied drift rate) and the temperature coefficient (it
can be worse than the drift rate). In short, there
are a number of factors to consider before we can
determine frequency uncertainty.

In a factory setting there is often an in-house fre-
quency standard available that is traceable to a
national standard. Most analyzers with internal
reference oscillators allow substitution of an exter-
nal reference. The frequency reference error in the
above expression then becomes that of the in-
house standard.

When making measurements in the field, we typi-
cally want to turn our analyzer on, complete our
task, and move on as quickly as possible. It is help-
ful to know how the reference in our analyzer
behaves under short warm up conditions. For the
Agilent 8560 series of portable spectrum analyzers,
specifications for the standard reference give per-
formance after a five-minute warm up; specifica-

tions for the precision frequency reference give
performance for both five- and fifteen-minute
warm up.

Most analyzers with digital displays include mark-
ers. When a single marker is activated, it gives us
absolute frequency (as well as amplitude).
However, the indicated frequency of the marker is
a function of the frequency calibration of the dis-
play and the location of the marker on the display.
To get best frequency accuracy, then, we must be
careful to place the marker exactly at the peak of
the response to a spectral component. If we place
the marker at some other point on the response,
we shall get a different frequency reading. For the
best accuracy, we may narrow the span and resolu-
tion bandwidth to minimize their effects and to
make it easier to place the marker at the peak of
the response.

Many analyzers that have markers include internal
counter schemes that eliminate the effects of span
and resolution bandwidth on frequency accuracy.
The counter does not count the input signal direct-
ly but instead counts the IF signal and perhaps
one or more of the LOs, and the microprocessor
computes the frequency of the input signal. A min-
imum signal-to-noise ratio is required to eliminate
noise as a factor in the count. But counting the sig-
nal in the IF also eliminates the need to place the
marker at the exact peak of the signal response on
the display. Anywhere sufficiently out of the noise
will do. Marker count accuracy might be stated as:

±[(marker freq x freq ref error) + counter 
resolution + A Hz].

We must still deal with the frequency reference
error as above. Counter resolution refers to the
least significant digit in the counter readout, a fac-
tor here just as with any digital counter. Some ana-
lyzers allow the counter mode to be used with
delta markers. In that case, the effects of counter
resolution and the fixed frequency would be doubled.

Summary

In this chapter we have described the RF super-
heterodyne spectrum analyzer. We went through
the block diagram and noted bow the various sec-
tions affect our ability to make measurements. We
looked at amplitude accuracy, sensitivity, and
dynamic range, and ended with a discussion of fre-
quency measurements. In the next chapter we
shall see bow we might extend the frequency range
to enable us to analyze microwave signals. 
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Chapter 3 
Extending the frequency range

Harmonic mixing

In chapter 2, we described a single-range spectrum
analyzer that tunes to 2.9 GHz. Now we wish to
tune higher in frequency, perhaps to 22 GHz. The
most economical way to achieve such an extended
range is to use harmonic mixing.

But let us take one step at a time. In developing
our tuning equation in chapter 2, we found that we
needed the low-pass filter of figure 7 to prevent
higher-frequency signals from reaching the mixer.
The result was a uniquely-responding, single-band
analyzer that tuned to 2.9 GHz. Now we wish to
observe and measure higher-frequency signals, so
we must remove the low-pass filter.

Another factor that we explored in developing the
tuning equation was the choice of LO and interme-
diate frequencies. We decided that the IF should
not be within the band of interest because it creat-
ed a hole in our tuning range in which we could
not make measurements. So we chose 3.6 GHz,
moving the IF above the highest tuning range of
interest (2.9 GHz). Since our new tuning range will
be above 2.9 GHz, it seems logical to move the new
IF to a frequency below 2.9 GHz. A typical first IF
for these higher-frequency ranges in Agilent spec-
trum analyzers is 321.4 MHz. We shall use this fre-
quency in our examples. In summary, for the low
band, up to 2.9 GHz, our first IF is 3.6 GHz. For the
upper frequency bands, we must switch to a first
IF of 321.4 MHz. Note that in figure 10 the second
IF is 321.4 MHz, so all we need to do when we wish
to tune to the higher ranges is bypass the first IF,
as shown in figure 57.

Figure 57. Switching arrangement to provide a high IF for the low band
and a low IF for the high bands

In chapter 2 we used a mathematical approach to
conclude that we needed a low-pass filter. As we
shall see, things become more complex in the situ-
ation here, so we shall use a graphical approach as
an easier method to see what is happening. The
low band is the simpler case, so we shall start with
that. In all of our graphs, we shall plot the LO fre-
quency along the horizontal axis and signal fre-
quency along the vertical axis, as shown in figure
58. Since we know that we get a mixing product
equal to the IF (and therefore a response on the
display) whenever the input signal differs from the
LO by the IF, we can determine the frequency to
which the analyzer is tuned simply by adding the
IF to or subtracting it from the LO frequency. To
determine our tuning range, then, we start by plot-
ting the LO frequency against the signal-frequency
axis as shown by the dashed line in figure 58.
Subtracting the IF from the dashed line gives us a
tuning range of 0 to 2.9 GHz, the range that we
developed in chapter 2. Note that this line in figure
58 is labeled “1-” to indicate fundamental mixing
and the use of the minus sign in the tuning equa-
tion. We can use the graph to determine what LO
frequency is required to receive a particular signal
(to display a 1-GHz signal, the LO must be tuned to
4.6 GHz) or to what signal the analyzer is tuned for
a given LO frequency (for an LO frequency of 6
GHz, the spectrum analyzer is tuned to receive a
signal frequency of 2.4 GHz). In our text, we shall
round off the first IF to one decimal place; the true
IF is shown on the block diagram.
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Now let’s add the other fundamental-mixing band
by adding the IF to the LO line in figure 58. This
gives us the solid upper line, labeled 1+, that indi-
cates a tuning range from 7.2 to 10.1 GHz. Note
that for a given LO frequency, the two frequencies
to which the analyzer is tuned are separated by
twice the IF. It would seem valid to argue that
while measuring signals in the low band, we shall
most likely not be bothered by signals in the 1+ fre-
quency range.

Next let us see to what extent harmonic mixing
complicates the situation. Harmonic mixing comes
about because the LO provides a high-level drive
signal to the mixer for efficient mixing, and since
the mixer is a non-linear device, it generates har-
monics of the LO signal. Incoming signals can mix
against LO harmonics just as well as the funda-
mental, and any mixing product that equals the IF
produces a response on the display. In other
words, our tuning (mixing) equation now becomes:

Fs = nfLO ± fIF,

where n = LO harmonic,
and the other parameters 
remain the same as before.

Let’s add second-harmonic mixing to our graph in
figure 58 and see to what extent this complicates
our measurement procedure. As before, we shall
first plot the LO frequency against the signal- fre-
quency axis. Multiplying the LO frequency by two
yields the upper dashed line of figure 59. As we
did for fundamental mixing, we simply subtract the
IF (3.6 GHz) from and add it to the LO second-har-
monic curve to produce the 2- and 2+ tuning
ranges. Since neither of these overlap the desired
1- tuning range, we can again argue that they do
not really complicate the measurement process. In
other words, signals in the 1-tuning range produce
unique, unambiguous responses on our analyzer
display. Should we be concerned about signals in
the 2-, 1+, or higher bands producing ambiguous
responses, we can add a simple external low-pass
filter in front of our analyzer to eliminate them.

Figure 58. Tuning curves for fundamental mixing in the low-band, 
high-IF case

Figure 59. Signals in the 1-frequency range produce single,
unambiguous responses in the low-band, high-IF case
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The situation is considerably different for the 
high-band, low-IF case. As before, we shall start by
plotting the LO fundamental against the signal-fre-
quency axis and then add and subtract the IF, pro-
ducing the results shown in figure 60. Note that
the 1- and 1+ tuning ranges are much closer togeth-
er, and in fact overlap, because the IF is a much
lower frequency, 321.4 MHz in this case. Does the
close spacing of the tuning ranges complicate the
measurement process? Yes and no. First of all, our
system can be calibrated for only one tuning range
at a time. In this case, we would choose the 1- tun-
ing to give us a low-end frequency of 2.7 GHz so
that we have some overlap with the 2.9 GHz upper
end of our lowband tuning range. So what are we
likely to see on the display? If we enter the graph
at an LO frequency of 5 GHz, we find that there
are two possible signal frequencies that would give
us responses at the same point on the display: 4.7
and 5.3 GHz (rounding the numbers again). On the
other hand, if we enter the signal frequency axis at
5.3 GHz, we find that in addition to the 1+

response at an LO frequency of 5 GHz, we could
also get a 1- response if we allowed the LO to
sweep as high as 5.6 GHz, twice the IF above 
5 GHz. Also, if we entered the signal frequency
graph at 4.7 GHz, we would find a 1+ response at
an LO frequency of about 4.4 GHz (twice the IF
below 5 GHz) in addition to the 1- response at an
LO frequency of 5 GHz.

Here we see cases of images and multiple responses.
Images are signals at different frequencies that
produce responses at the same point on the dis-
play, that is, at the same LO frequency. As we can
see from figure 60, images are separated by twice
the IF. The multiple-response case results when, a
single input signal (sinusoid) causes more than
one response on the display, that is, a response at
two or more LO frequencies (two in this case).
Again, note that the LO frequencies producing the
multiple responses are spaced by twice the IF.

Clearly we need some mechanism to differentiate
between responses generated on the 1- tuning
curve for which our analyzer is calibrated and
those produced on the 1+ tuning curve. However,
before we look at signal identification solutions,
let’s add harmonic-mixing curves to 22 GHz and
see if there are any additional factors that we must
consider in the signal-identification process.
Figure 61 shows tuning curves up to the fourth LO
harmonic.

Figure 60. Tuning curves for fundamental mixing in the high-band, 
low-IF case

Figure 61. Tuning curves for n = 1 through 4 in the high-band, low-IF
case

In examining figure 61, we find nothing really new,
but rather an extension of the multiples and
images that we discussed in figure 60. For exam-
ple, we have image pairs for each of the LO har-
monics. For an LO frequency of 5 GHz, we have a
pair for fundamental mixing that we discussed in
figure 60 at 4.7 and 5.3 GHz. For the second, third,
and fourth harmonics of the LO, we have image
pairs of 9.7 and 10.3, 14.7 and 15.3, and 19.7 and
20.3 GHz, respectively. The number of multiple
responses that we get is a function of signal fre-
quency and how far we sweep the LO. For exam-
ple, if we sweep the LO over its full 3 to 6.5 GHz
range, we get two responses for a 5-GHz input sig-
nal and four responses for an input signal at 
10 GHz. Figure 62 shows two cases on an Agilent
71200, a spectrum analyzer with a wide-open front
end (no filtering at the input prior to the first
mixer).
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Can we conclude from figures 61 and 62 that such
a spectrum analyzer is not practical? Certainly not.
Many of us work in controlled environments in
which we deal with only one or two signals at a
time. In such environments, analyzers like the
Agilent 71200 work just fine. From figures 60 and
61 we conclude that image signals, if they exist,
can be filtered away with simple bandpass filters
and that multiple responses will not bother us if
we limit our frequency span to something less than
600 MHz (twice the IF). And, knowing the signal
frequencies, we can tune to the signal directly
knowing that the analyzer will select the appropri-
ate mode (1-, 2-, 3+, or 4+) for which it is calibrated.

Figure 62A. 

Figure 62B.

Figure 62. The number of responses is a function of signal frequency and
analyzer span

Amplitude calibration

So far, we have seen that a harmonic-mixing 
spectrum analyzer does not always indicate the
correct frequency of a given response. What about
amplitude?

The conversion loss of a mixer is a function of har-
monic number, and the loss goes up as the har-
monic number goes up. (Here we are considering
only those cases in which we observe a particular
response on the correct mixing mode or tuning
range.) This means that signals of equal amplitude
would appear at different levels on the display if
they involved different mixing modes. To preserve
amplitude calibration, then, something must be
done. For example, the reference level or the IF
gain could be changed to compensate for the
changing conversion loss. In Agilent spectrum ana-
lyzers, the IF gain is changed1.

The increased conversion loss at higher LO har-
monics causes a loss of sensitivity just as if we had
increased the input attenuator. And since the IF
gain change occurs after the conversion loss, the
gain change is reflected by a corresponding change
in the displayed noise level. See figure 63. So we
can determine analyzer sensitivity on the harmon-
ic-mixing ranges by noting the average displayed
noise level just as we did on fundamental mixing.

Figure 63. Steps in the noise floor indicate changes in sensitivity with
changes in LO harmonic used in the mixing process

1 In the Agilent Modular Series, the display is shifted digitally in between the 10-dB IF gain steps. 
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Phase noise

In chapter 2 we noted that instability of an analyz-
er LO appears as phase noise around signals that
are displayed far enough above the noise floor. We
also noted that this phase noise can impose a limit
on our ability to measure closely-spaced signals
that differ in amplitude. Refer to figures 20 and 53.
The level of the phase noise indicates the angular,
or frequency, deviation of the LO.

What happens to phase noise when a harmonic of
the LO is used in the mixing process? Relative to
fundamental mixing, phase noise increases by:

20*log(n),

where n = harmonic of the LO.

For example, suppose that the LO fundamental has
a peak-to-peak deviation of 100 Hz. The second
harmonic then has a 200-Hz peak-to-peak devia-
tion; the third harmonic, 300 Hz; and so on. Since
the phase noise indicates the signal (noise in this
case) producing the modulation, the level of the
phase noise must be higher to produce greater
deviation. When the degree of modulation is very
small, as in the situation here, the amplitude of the
modulation side bands is directly proportional to
the deviation of the carrier (LO). If the deviation
doubles, then, the level of the side bands must also
double in voltage; that is, increase by 6 dB or
20*log(2). As a result, the ability of our analyzer to
measure closely spaced signals that are unequal in
amplitude decreases as higher harmonies of the LO
are used for mixing. Phase-noise levels for funda-
mental and fourth-harmonic mixing are shown in
figure 64.

Figure 64. Difference in phase noise between fundamental and 
fourth-harmonic mixing

Signal identification

Even in a controlled situation, there are times
when we must contend with unknown signals. In
such cases, it is quite possible that the particular
response we have tuned onto the display has been
generated on an LO harmonic or mixing mode
other than the one for which the display is cali-
brated. So our analyzer must have some way to tell
us whether or not the display is calibrated for the
signal response in question.

The Agilent 71200 offers two different identifica-
tion methods: image and shift. We shall consider
the image method first. Going back to figure 60,
let’s assume that we have tuned the analyzer to a
frequency of 4.7 GHz (an LO frequency of 5 GHz),
and we see a response in the center of the display.
Let’s further assume that the signal is either 4.7 or
5.3 GHz, but that we do not know which. If we use
the image-identification process, the analyzer
changes the first LO by twice the IF, first in one
direction and then the other. If our signal is indeed
at 4.7 GHz, when the analyzer changes its LO down
in frequency, there is still a response (due to the
1+ mixing mode) in the center of the display. On
the other hand, when the LO is moved up, there is
no response on the display. Thus we can conclude
that the signal is indeed at 4.7 GHz and that the
analyzer is properly tuned.

If, on the other hand, we had tuned our analyzer to
4.7 GHz (5 GHz-LO) and the input signal is actually
5.3 GHz, we would still have a response in the mid-
dle of the display. In this case, however, when we
activate the image identification routine, there is
no response when the LO is moved down by twice
the IF and there is a response when the LO is
moved up. This result tells us that when we are
tuned to 4.7 GHz, we are actually observing the
image of 4.7 GHz. So we must tune our analyzer
higher in frequency by twice the IF, to 5.3 GHz
(5.6-GHz LO), to observe the response on the 1-

mixing mode for which the analyzer is calibrated.

What happens if the response on the display is cre-
ated by a harmonic of the LO different from the
one for which the analyzer is calibrated? Referring
to figure 65, suppose that we have tuned our ana-
lyzer to 4.7 GHz (5-GHz LO), but our input signal is
actually 10.3 GHz. We shall see a response in the
middle of the display from the 2+ mixing mode.
When we activate the image- identification
process, the analyzer again moves the LO, up and
down, by twice the IF. But neither change pro-
duces a response on the display. The test fails for
both cases. We know that multiple responses for a
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given LO harmonic are separated by an LO differ-
ence of twice the IF. But here the response is gen-
erated by the second harmonic of the LO, so it is
the second harmonic of the LO that we must
change by twice the IF to tune from one response
to the other. The image routine, at least as a first
step, changed the fundamental of the LO by twice
the IF and so changed the second harmonic by four
times the IF. Hence the failure. Having failed, the
system then divides the change by two and tries
again. In this case the analyzer changes the LO
fundamental by just 1*IF and so moves the second
harmonic of the LO by the required 2*IF. Now
when the LO moves up, the second of the response
pair comes to mid-screen, and the test is successful.

The tests described so far are automatic, and a
message appears on the display that tells us the
signal frequency and gives us the opportunity to
either tune the analyzer to that frequency or
ignore the signal. The identification process can
also be done manually. The manual routine is
offered because noisy or modulated signals can
sometimes fool the automatic process.

The image-identification method does not work on
the low band (0 to 2.9 GHz) because, due to the
high IF, we get only a single response in this band
rather than a response pair. The second identifica-
tion routine, the shift routine, works on this band
as well as on the higher bands. This method
involves changing the frequencies of two LOs in
the analyzer rather than just one. Referring back to
figure 57, consider what happens if we reduce the
frequency of the 300 MHz LO to 298 MHz. To have
a signal in the middle of the 21.4 MHz IF, the signal
coming from the second IF must be 319.4 MHz;
that is, the sum of 21.4 and 298 MHz. And if we are
in the low band, as shown in figure 57, the new
center frequency of the first IF is 3.6194 GHz
(319.4 MHz plus 3.3 GHz). In any case, whether we
are in the low-frequency, high-IF or the high-fre-
quency, low-IF band, we have reduced the effective
first IF by 2 MHz.

Although this method is called the shift method,
we are actually looking for the absence of a shift to
indicate that we are on the correct response on the
correct band. To negate the downward change in
the first IF, the first LO is also changed. If the band
that we have selected on the analyzer uses a minus
mixing mode - for example, l- or 2- - the first LO is
moved up in frequency. For the 3+ and 4+ mixing
modes, the first LO is moved down. Since the
appropriate harmonic for the band selected must 
shift 2 MHz, the actual change to the LO funda-
mental is 2/n MHz, where n is the appropriate har-
monic number. As noted above, there is no 

Figure 65. A response at a given LO frequency does not uniquely 
determine signal frequency

frequency shift of the displayed response when we
are tuned to the correct response on the correct
band. In all other cases there is a shift.

As with the image method, the shift method can be
run automatically or manually. When run automat-
ically, the Agilent 71200 indicates on its display
whether the identified signal is in or out of band
and, if the signal does not match the current tun-
ing of the analyzer, gives us a choice of either tun-
ing to the signal or ignoring it.

There is yet a third, totally manual identification
routine. This method takes advantage of the fact
that in the high-frequency, low-IF band the
response pairs are easily located, as in figure 62.
This method works particularly well when external
mixers are used for measurements above 22 GHz.
It also works well for modulated and noisy signals.
This method has us tune halfway between the two
responses of a given pair (for example, those in fig-
ure 62) and set the frequency span wide enough to
see both responses. Then we simply note the indi-
cated separation of the two responses. If the sepa-
ration is twice the IF (642 MHz), then we have cho-
sen the band with the correct harmonic number. If
the responses are closer together than twice the IF,
then they are produced on an LO harmonic higher
than the harmonic utilized for the band we are on.
If the indicated separation is greater than twice
the IF, then the responses are produced on a lower
LO harmonic. Once we have chosen the correct LO
harmonic (by selecting a center frequency that
yields a 642-MHz separation of the response pair),
we can choose the correct response. For a minus
mixing mode (1- or 2- on the Agilent 71200, for
example), we would select the response displayed
to the right; for a plus mixing mode (3+ or 4+ on
the Agilent 71200), to the left.
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Preselection

We made the case for the spectrum analyzer with a
wide-open front end on the basis of a controlled
measurement environment involving few, if any,
unknown signals. However, there are many cases in
which we have no idea how many signals are
involved or what their frequencies might be. For
example, we could be searching for unknown spu-
rious signals, conducting site surveillance tests as
part of a frequency-monitoring program, or per-
forming EMI tests to measure unwanted device
emissions. In all these cases, we could be looking
for totally unknown signals in a potentially crowd-
ed spectral environment. Having to perform some
form of identification routine on each and every
response would make measurement time intolera-
bly long. Hence the need for some form of pre-fil-
tering or preselection.

What form must our preselection take? Referring
back to figure 60, assume that we have the image
pair 4.7 and 5.3 GHz present at the input of our
analyzer. If we were particularly interested in one,
we could use a band pass filter to allow that signal
into the analyzer and reject the other. However, the
fixed filter does not eliminate multiple responses,
so if the spectrum is crowded there is still poten-
tial for confusion. More important, perhaps, is the
restriction that a fixed filter puts on the flexibility
of the analyzer. If we are doing broadband testing,
we certainly do not want to be continually forced
to change band pass filters.

The solution is a tunable filter configured in such a
way that it automatically tracks the frequency of
the appropriate mixing mode. Figure 66 shows the
effect of such a preselector. Here we take advan-
tage of the fact that our superheterodyne spectrum
analyzer is not a real-time analyzer; that is, it
tunes to only one frequency at a time. The dashed
lines in figure 66 represent the bandwidth of the
tracking preselector. Signals beyond the dashed
lines are rejected. Suppose we have signals at 4.7
and 5.3 GHz present at the analyzer input. If we set
a center frequency of 5 GHz and a span of 2 GHz,
let’s see what happens as the analyzer tunes across
this range. As the LO sweeps past 4.4 GHz (the fre-
quency at which it could mix with the 4.7 GHz
input signal on its 1+ mixing mode), the preselec-
tor is tuned to 4.1 GHz and therefore rejects the
4.7 GHz signal. Since the input signal does not
reach the mixer, no mixing occurs, and no
response appears on the display. As the LO sweeps
past 5 GHz, the preselector allows the 4.7 GHz 

Figure 66. A preselector allows a signal to reach the mixer only when
the analyzer is tuned to receive the signal 

signal to reach the mixer, and we see the appropri-
ate response on the display. The 5.3 GHz image sig-
nal is rejected, so it creates no mixing product to
interact with the mixing product from the 4.7 GHz
signal and cause a false display. Finally, as the LO
sweeps past 5.6 GHz, the preselector allows the 5.3
GHz signal to reach the mixer, and we see it prop-
erly displayed. Note in figure 61 that nowhere do
the various mixing modes intersect. So as long as
the preselector bandwidth is narrow enough (it
typically varies from 20 MHz at low frequencies to
80 MHz at high frequencies) it will eliminate all
image and multiple responses.

The word eliminate may be a little strong.
Preselectors do not have infinite rejection.
Something in the 70- to 80-dB range is more likely.
So if we are looking for very low-level signals in
the presence of very high-level signals, we might
see low-level images or multiples of the high-level
signals.
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What about the low band? Most tracking preselec-
tors use YIG technology, and YIG filters do not
operate well at low frequencies. Fortunately, there
is a simple solution. Figure 59 shows that no other
mixing mode overlaps the 1-mixing mode in the
low frequency, high-IF case. So a simple low-pass
filter attenuates both image and multiple respons-
es. Figure 67 shows the input architecture of a typ-
ical microwave spectrum analyzer.

Improved dynamic range

A preselector improves dynamic range if the sig-
nals in question have sufficient frequency separa-
tion. The discussion of dynamic range in chapter 2
assumed implicitly that both the large and small
signals were always present at the mixer and that
their amplitudes did not change during the course
of the measurement. But as we have seen, if signals
are far enough apart, a preselector allows one to
reach the mixer while rejecting the others. For
example, if we were to test a microwave oscillator
for harmonies, a preselector would reject the fun-
damental when we tuned the analyzer to one of
the harmonics.

Let’s look at the dynamic range of a second-har-
monic test of a 3GHz oscillator. In figure 51 of
chapter 2, we suggested a second-order specifica-
tion for the input mixer such that a -40 dBm signal
at the mixer would produce a second harmonic
product –70 dBc. We also know from our discus-
sion that for every dB the level of the fundamental
changes at the mixer, measurement range also
changes by 1 dB. The second-harmonic distortion
curve has been regraphed in figure 68 with an
extended range. For this example, we shall assume
plenty of power from the oscillator and set the
input attenuator so that when we measure the
oscillator fundamental, the level at the mixer is
–10 dBm, below the 1-dB compression point.

From the graph, we see that a –10 dBm signal at
the mixer produces a second-harmonic distortion
component 40 dB down. Now we tune the analyzer
to the 6-GHz second harmonic. If the preselector
has 70-dB rejection, the fundamental at the mixer
has dropped to –80 dBm. Figure 68 indicates that
for a signal of –80 dBm at the mixer, the internally
generated distortion is –110 dBc, meaning 110 dB
below the new fundamental level of –80 dBm. 
This puts the absolute level of the harmonic at
–190 dBm. So the difference between the funda-
mental we tuned to and the internally generated
second harmonic we tuned to is 180 dB!

Figure 67. Front-end architecture of a typical preselected spectrum 
analyzer.

Figure 68. Extended second-order distortion graph

Clearly, for harmonic distortion, dynamic range is
limited on the low-level (harmonic) end only by the
noise floor (sensitivity) of the analyzer.

What about the upper, high-level end? When mea-
suring the oscillator fundamental, we must limit
the power at the mixer to get an accurate reading
of the level. We can use either internal or external
attenuation to limit the level of the fundamental at
the mixer to something less than the 1-dB com-
pression point. However, since the preselector
highly attenuates the fundamental when we are
tuned to the second harmonic, we can remove
some attenuation if we need better sensitivity to
measure the harmonic. A fundamental level of 
+20 dBm at the preselector should not affect our
ability to measure the harmonic.1

1 Some sources can be damaged if high-level external signals are applied their output circuits. The preselector achieves its out-of-band rejection by reflecting the 
signal. If we select 0 dB of input attenuation for best sensitivity when measuring harmonics, we must remember that the fundamental is almost totally reflected.
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Any improvement in dynamic range for third-order
intermodulation measurements depends upon sep-
aration of the test tones versus preselector band-
width. As we noted, typical preselector bandwidth
is about 20 MHz at the low end and 80 MHz at the
high end. As a conservative figure, we might use 
18 dB per octave roll off of a typical three-sphere
YIG filter beyond the 3-dB point. So to determine
the improvement in dynamic range, we must deter-
mine to what extent each of the fundamental tones
is attenuated and how that affects internally gener-
ated distortion. From the expressions in chapter 2
for third-order intermodulation, we have:

(k4/8)VLOV1
2V2 cos[wLO – (2w1 – w2)]t

and

(k4 /8)VLOV1V2
2cos[wLO – (2w2 – w1)]t.

Looking at these expressions, we see that the
amplitude of the lower distortion component 
(2w1 – w2) varies as the square of V1 and linearly
with V2. On the other side, the amplitude of the
upper distortion component (2w2 – w1 ) varies lin-
early with V1 and as the square of V2. However,
unlike the case in figure 50 of chapter 2, the prese-
lector will not attenuate the two fundamental
tones equally. Figure 69 illustrates the situation in
which we are tuned to the lower distortion compo-
nent and the two fundamental tones are separated
by half the preselector bandwidth. In this case the
lower-frequency test tone is attenuated 3 dB; the
upper test tone, 21 dB (3 dB plus an additional 
18 dB per octave away from center frequency).
Since we are tuned to the lower distortion compo-
nent, internally generated distortion at this fre-
quency drops by a factor of two relative to the
attenuation of V1 and equally as fast as the attenu-
ation of V2. The improvement in dynamic range is
a total of 27 dB. Improvements for other signal
separations appear in the table included in figure
69. As in the case of second harmonic distortion,
the noise floor of the analyzer must be considered,
too. For very closely spaced test tones, the prese-
lector provides no improvement, and we determine
dynamic range as if the preselector was not there.

The discussion of dynamic range in chapter 2 also
applies to the low-pass-filtered low band. The only
exceptions occur when a particular harmonic of a
low-band signal falls within the preselected range.
For example, if we measure the second harmonic
of a 1.5-GHz fundamental, we get the benefit of the
preselector when we tune to the 3-GHz harmonic.

Fig. 69. Preselector attenuation and improvement in third-order inter-
modulation dynamic range.

Multiband tuning

Not only does a preselector effectively eliminate
image and multiple responses, it makes tuning
across wide frequency ranges practical. All Agilent
spectrum analyzers with built-in preselectors allow
tuning across the entire preselected range in a sin-
gle sweep, as shown in figure 70A. Analyzers with
microprocessors also allow spans less than the full
preselected range that nevertheless involve more
than one mixing mode.

Figure 70A. 
Figure 70B. 

Figure 70. Preselection makes wide spans practical
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The wide frequency spans are accomplished by
continuously tuning the preselector while repeat-
edly retuning the LO as appropriate for the har-
monic used in the particular mixing mode. The
abrupt steps in the displayed noise floor occur
because the IF gain is changed to compensate for
the changing conversion loss in the mixer as the
LO harmonic changes. For all practical purposes,
then, the preselected range becomes a single tun-
ing band. However, continual sweeping across the
switch point between the low-pass-filtered low
band and the preselected high band is not allowed
because a mechanical switch is used to select the
band, and continual operation of the switch would
cause excessive wear.

The Agilent 71200 allows tuning over its entire tun-
ing range because the same mixer is used on both
low and high bands, and therefore no band switch
is involved. However, because it is not preselected,
this wide tuning is not as useful as on a preselect-
ed analyzer. See figure 70B.

Pluses and minuses of preselection

We have seen the pluses of preselection: simpler
analyzer operation, uncluttered displays, improved
dynamic range, and wide spans. But there are
some minuses relative to the unpreselected analyzer
as well.

First of all, the preselector has insertion loss, typi-
cally 6 to 8 dB. This loss comes prior to the first
stage of gain, so system sensitivity is degraded by
the full loss. In addition, when a preselector is con-
nected directly to a mixer as shown in figure 67,
the interaction of the mismatch of the preselector
(typically 2.5 VSWR) with that of the input mixer
(typically 3 VSWR) can cause a degradation of fre-
quency response approaching ±2 dB. To minimize
this interaction, a matching pad (fixed attenuator)
or isolator is often inserted between the preselec-
tor and mixer. Sensitivity is degraded by the full
value of the pad (6 to 10 dB) or isolator (1 to 2
dB). The lower loss of the isolator yields better
sensitivity, but the better match of the pad yields
better flatness.

Some architectures eliminate the need for the
matching pad or isolator. As the electrical length
between the preselector and mixer increases, the
rate of change of phase of the reflected and rere-
flected signals becomes more rapid for a given

change in input frequency. The result is a more
exaggerated ripple effect on flatness. Architectures
such as those used in the 8566A and B and the
Agilent 71210 include the mixer diode as an inte-
gral part of the preselector/mixer assembly. In
such an assembly, there is minimal electrical
length between the preselector and mixer. This
architecture thus removes the ripple effect on fre-
quency response and improves sensitivity by elimi-
nating the matching pad or isolator.

Even aside from the its interaction with the mixer,
a preselector causes some degradation of frequen-
cy response. In most configurations, the tuning
ramp for the preselector and local oscillator come
from the same source, but there is no feedback
mechanism to ensure that the preselector exactly
tracks the tuning of the analyzer. As a result, ana-
lyzers such as the 8566B have both manual and
automatic preselector-peak routines, and best flat-
ness is obtained by peaking the preselector at each
signal. The 8562A, on the other band, has preselec-
tor-peak values programmed into the firmware for
each GHz along the frequency range, so specified
frequency response is obtained without taking
extra steps to peak the preselector.

Wideband fundamental mixing

Even though figure 67 is a simplified block dia-
gram, if we look at it closely, we can find three
areas for improved operation: ability to sweep
across the low-band/high-band switch point, fun-
damental mixing across the entire frequency range
for better sensitivity, and automatic preselector
peaking for better amplitude accuracy and faster
measurements.

All three areas are addressed in the Agilent 71210.
First of all, this analyzer uses a solid-state switch
that is part of the preselector circuit to switch
between the low and high bands. As a result, the
Agilent 71210 can sweep across the switch point
continuously and simplify the analysis of spectra
that straddle the switch point. The solid-state
switch also permits continuous sweeps across the
entire 0 to 22 GHz frequency range.
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Second, fundamental mixing avoids the loss of 
sensitivity that results from harmonic mixing.
Fundamental mixing could be achieved by using a
3 to 22 GHz fundamental oscillator (if one existed).
The actual scheme used in the Agilent 71210 multi-
plies the 3 to 6.5 GHz LO as appropriate before it
is applied to the mixer. Such an arrangement is
illustrated in figure 71. In this case the sensitivity
(noise floor) remains essentially constant across
the entire frequency range, as shown in figure 72.
The slight rise of the noise at the high end of the
low band results from an increased loss in the
solid-state switch.

The improved sensitivity gives the Agilent 71210
an advantage over harmonic-mixing analyzers
when it comes to the measurement of low-level sig-
nals. Perhaps more important is the potential for
reduced test times. For example, at 20 GHz the
Agilent 71210 enjoys a sensitivity advantage of
about 20 dB over the 8566B. For a test requiring a
given sensitivity, then, the resolution bandwidth
selected on the 71210 can be one hundred times
wider than the bandwidth on the 8566B. We know
from chapter 2 that sweep time (for analog filters)
is inversely proportional to the square of the reso-
lution bandwidth. So the 71210 has a potential
measurement time advantage over the 8566B of
10,000:1!

Finally, proper preselector peaking plays a role in
both amplitude accuracy and measurement time.
In an open-loop configuration, the tuning of the
preselector may not exactly match that of the ana-
lyzer. As a result, the preselector - a bandpass fil-
ter - will be mistuned to varying degrees as a func-
tion of frequency and so add to the non-flatness of
the system. Stopping to optimize preselector tun-
ing at each and every measurement point would
add considerably to measurement time.

The 71210 achieves dynamic preselector peaking
by including a fourth YIG sphere in the same
assembly that includes the three spheres used to
form the preselector filter. The fourth sphere is the
resonant element in a discriminator circuit. The
resonant frequency of a YIG sphere is determined
by the strength of the magnetic field in which it is
placed. All four spheres of the preselector/ dis-
criminator are placed in the magnetic field of an
electromagnet. The tuning ramp of the analyzer
determines the current in the coil of the 
electromagnet and thus tunes the preselector/

Figure 71. Front-end architecture of the Agilent 71210 with solid-state
band switch, fundamental mixing to 22 GHz, and dynamic preselector
peaking

Figure 72. Fundamental mixing across the entire tuning range gives the
71210 the same sensitivity at 22 GHz as at 1 GHz

discriminator. There is a second, small coil within
the preselector/discriminator assembly to adjust
the magnetic field of only the discriminator
sphere. The current in this small coil is such that
the resonant frequency of the discriminator sphere
is higher than the resonant frequency of the prese-
lector spheres by 321.4 MHz, the first IF in the
high-frequency, low-IF range. From the tuning
equation, we know that 321.4 MHz is the frequency
difference between the LO and an input signal for
proper tuning of the analyzer to receive that signal.
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Since the discriminator sphere resonates at a fre-
quency 321.4 MHz higher than do the preselector
spheres, if we can devise a scheme to adjust the
current in the electromagnet to keep the discrimi-
nator sphere resonating at the LO frequency, the
preselector will be properly tuned by definition. As
shown in figure 71, there is indeed a feedback
mechanism between the discriminator and the
main tuning coil. When the discriminator sphere
resonates at the LO frequency, there is no output,
and no correction is added to the tuning ramp.
Should the resonant frequency of the discrimina-
tor sphere differ from the LO frequency, the cur-
rent through the electromagnet is not correct for
the tuned frequency of the analyzer, and not only
is the discriminator sphere mistuned, but the pres-
elector is mistuned as well. But if the discrimina-
tor is mistuned, there is an output voltage that
adds to or subtracts from the tuning ramp as
appropriate to adjust the current in the electro-
magnet to bring the resonant frequency of the dis-
criminator sphere back to the LO frequency. Again,
because the discriminator sphere is properly
tuned, the preselector is also properly tuned.
Because this is a truly dynamic, real-time system,
the preselector is always properly tuned and no
other tuning or peaking mechanism is needed.

So an architecture based on figure 71 addresses all
three areas of improvement suggested in reference
to figure 67.

Summary

In this chapter we looked at harmonic mixing as a
means of extending the frequency range of a spec-
trum analyzer. We found that, without some form
of filtering ahead of the first mixer, the display can
be complicated by image and multiple responses,
and signal identification might be necessary. We
next introduced the preselector, a tracking band-
pass filter that essentially eliminates the unwanted
responses. Finally, we looked at an improved input
architecture that provides fundamental mixing
over the entire frequency range, full-range sweeps,
and a dynamically peaked preselector.
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Glossary of terms
Absolute Amplitude Accuracy: The uncertainty of
an amplitude measurement in absolute terms,
either volts or power. Includes relative uncertain-
ties (see Relative Amplitude Accuracy) plus cali-
brator uncertainty. For improved accuracy, some
spectrum analyzers have frequency response speci-
fied relative to the calibrator as well as relative to
the mid-point between peak-to-peak extremes.

Amplitude Accuracy: The uncertainty of an ampli-
tude measurement, whether relative or absolute.

Analog Display: The case in which the analog sig-
nal information (from the envelope detector) is
written directly to the display. Analyzers with vec-
tor displays, as opposed to raster displays, typical-
ly revert to an analog display on fast sweeps in
zero span even though the normal display mode is
digital.

Average Noise Level: See Displayed Average Noise
Level.

Bandwidth Selectivity: A measure of an analyzer’s
ability to resolve signals unequal in amplitude.
Also called shape factor, bandwidth selectivity is
the ratio of the 60-dB bandwidth to the 3-dB band-
width for a given resolution (IF) filter. For some
analyzers, the 6-dB bandwidth is used in lieu of
the 3-dB bandwidth. In either case, bandwidth
selectivity tells us how steep the filter skirts are.

CRT Persistence: An indication of the rate at
which the image fades on the display. In analyzers
that digitize the trace (video) information before
writing it to the screen, the refresh rate is high
enough to prevent any flicker in the display, so
short-persistence CRTs are used. Purely analog
(older) analyzers typically use long persistence or
variable -persistence CRTs because the refresh rate
is the same as the sweep rate.

Delta Marker: A mode in which a fixed, reference
marker has been established and a second, active
marker is available that we can place anywhere on
the displayed trace. A read out indicates the rela-
tive frequency separation and amplitude difference
between the reference and active markers.

Digital Display: A mode in which trace (analog
video) information is digitized and stored in mem-
ory prior to being displayed. The displayed trace is
a series of points. The number of points is a func-
tion of the particular analyzer. Agilent analyzers
draw vectors between the points to present a con-
tinuous looking trace. The display is refreshed
(rewritten from data in memory) at a flicker-free
rate; the data in memory is updated at the sweep
rate.

Display Detector Mode: The manner in which the
analog video information is processed prior to
being digitized and stored in memory. See Neg
Peak, Pos Peak, Rosenfell, and Sample.

Display Dynamic Range: The maximum dynamic
range for which both the larger and smaller signal
may be viewed simultaneously on the CRT. For
analyzers with a maximum logarithmic display of
10 dB/div, the actual dynamic range (see Dynamic
Range) may be greater than the display dynamic
range.

Display Fidelity: The uncertainty in measuring rel-
ative differences in amplitude on a spectrum ana-
lyzer. On purely analog analyzers, differences must
be read directly on the CRT display. Many analyz-
ers with digital displays have markers, so differ-
ences are taken from stored data, and the ambigui-
ty of the CRT display is removed from the mea-
surement.

Display Range: The calibrated range of the CRT
for the particular display mode and scale factor.
See Linear and Log Display and Scale Factor.

Displayed Average Noise Level: The noise level as
seen on the analyzer’s display after setting the
video bandwidth narrow enough to reduce the
peak-to-peak noise fluctuations such that the dis-
played noise is seen as an essentially straight line.
Usually refers to the analyzer’s own internally gen-
erated noise as a measure of sensitivity and is typ-
ically specified in dBm under conditions of mini-
mum resolution bandwidth and minimum input
attenuation.
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Drift: The slow (relative to sweep time) change of
signal position on the display as a result of a
change in LO frequency versus sweep voltage.
While drift may require us to retune the analyzer
periodically, it does not impair frequency resolu-
tion.

Dynamic Range: The ratio in dB between the
largest and smallest signals, present at the input of
an analyzer simultaneously, that can be measured
to a given degree of accuracy. Dynamic range gen-
erally refers to measurement of distortion or inter-
modulation products.

Envelope Detector: Also called a peak detector, a
circuit element whose output follows the envelope,
but not the instantaneous variation, of its input
signal. In a superheterodyne spectrum analyzer,
the input to the envelope detector comes from the
final IF, and the output is a video signal. When we
put our analyzer in zero span, the envelope detec-
tor demodulates the input signal, and we can
observe the modulating signal as a function of time
on the display.

External Mixer: An independent mixer, usually
with a waveguide input port, used to extend the
frequency range of those spectrum analyzers
designed to utilize them. The analyzer provides the
LO signal and, if needed, mixer bias, and mixing
products are returned to the analyzer’s IF input.

FFT (Fast Fourier Transform): A mathematical
operation performed on a time-domain signal to
yield the individual spectral components that con-
stitute the signal. See Spectrum.

Flatness: See Frequency Response.

Frequency Accuracy: The uncertainty with which
the frequency of a signal or spectral component is
indicated, either in an absolute sense or relative to
some other signal or spectral component. Absolute
and relative frequency accuracies are specified
independently.

Frequency Range: The minimum to maximum fre-
quencies over which a spectrum analyzer can tune.
While the maximum frequency is generally thought
of in terms of an analyzer’s coaxial input, the
range of many microwave analyzers can be extend-
ed through use of external wave guide mixers.

Frequency Resolution: The ability of a spectrum
analyzer to separate closely spaced spectral com-
ponents and display them individually. Resolution
of equal amplitude components is determined by
resolution bandwidth; of unequal amplitude sig-
nals, by resolution bandwidth and bandwidth
selectivity.

Frequency Response: Variation in the displayed
amplitude of a signal as a function of frequency.
Typically specified in terms of ± dB relative to the
value midway between the extremes. Also may be
specified relative to the calibrator signal.

Frequency Span: The frequency range represented
by the horizontal axis of the display. Generally, fre-
quency span is given as the total span across the
full display. Older analyzers usually indicate fre-
quency span (scan width) on a per-division basis.

Frequency Stability: A general phrase that covers
both short- and long-term LO instability. The
sweep ramp that tunes the LO also determines
where a signal should appear on the display. Any
long-term variation in LO frequency (drift) with
respect to the sweep ramp causes a signal to slow-
ly shift its horizontal position on the display.
Shorter-term LO instability can appear as random
FM or phase noise on an otherwise stable signal.

Full Span: Depends upon the spectrum analyzer.
For some, full span means a frequency span that
covers the entire tuning range of the analyzer.
These analyzers include single-band RF analyzers
and microwave analyzers such as the 71210 that
use a solid-state switch to switch between the low
and preselected ranges. For other analyzers, full
span refers to a sub-range. For example, for 
a microwave spectrum analyzer such as the 
AGILENT 8566B that uses a mechanical switch to
switch between the low and preselected ranges,
full span may refer to either the low, non-preselect-
ed range or the high, preselected range.
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Gain Compression: That signal level at the input
mixer of a spectrum analyzer at which the dis-
played amplitude of the signal is a specified num-
ber of dB too low due just to mixer saturation. The
signal level is generally specified for 1-dB or 0.5-dB
compression and is usually between –3 and –10
dBm.

Harmonic Distortion: Unwanted frequency com-
ponents added to a signal as the result of the non-
linear behavior of the device (e.g. mixer, amplifier)
through which the signal passes. These unwanted
components are harmonically related to the origi-
nal signal.

Harmonic Mixing: The utilization of the LO har-
monics generated in a mixer to extend the tuning
range of a spectrum analyzer beyond the range
achievable using just the LO fundamental.

IF Gain/IF Attenuation: A control to adjust verti-
cal the position of signals on the display without
affecting the signal level at the input mixer. When
changed, the value of the reference level is changed
accordingly.

IF Feedthrough: A raising of the baseline trace on
the display due to an input signal at the intermedi-
ate frequency passing through the input mixer.
Generally a potential problem only on non-prese-
lected spectrum analyzers. The entire trace is
raised because the signal is always at the IF, i.e.
mixing with the LO is not required.

Image Response: A displayed signal that is actual-
ly twice the IF away from the frequency indicated
by the spectrum analyzer. For each harmonic of
the LO there is an image pair, one below and one
above the LO frequency by the IF. Images usually
appear only on non-preselected spectrum analyz-
ers.

Incidental FM: Unwanted frequency modulation
on the output of a device (signal source, amplifier)
caused by (incidental to) some other form of mod-
ulation, e.g. amplitude modulation.

Input Attenuator: A step attenuator between the
input connector and first mixer of a spectrum ana-
lyzer. Also called the RF attenuator. The input
attenuator is used to adjust level of the signal inci-
dent upon the first mixer. The attenuator is used
to prevent gain compression due to high-level
and/or broadband signals and to set dynamic
range by controlling the degree of internally-gener-
ated distortion. In some analyzers, the vertical
position of displayed signals is changed when the
input attenuator setting is changed, so the refer-
ence level is also changed accordingly. In AGILENT
microprocessor-controlled analyzers, the IF gain is
changed to compensate for input attenuator
changes, so signals remain stationary on the CRT
display, and the reference level is not changed.

Input Impedance: The terminating impedance that
the analyzer presents to the signal source. The
nominal impedance for RF and microwave analyz-
ers is usually 50 ohms. For some systems, e.g.
cable TV, 75 ohms is standard. The degree of mis-
match between the nominal and actual input
impedance is given in terms of VSWR (voltage
standing wave ratio).

Intermodulation Distortion: Unwanted frequency
components resulting from the interaction of two
or more spectral components passing through a
device with non-linear behavior (e.g. mixer, ampli-
fier). The unwanted components are related to the
fundamental components by sums and differences
of the fundamentals and various harmonics, e.g. 
f1 ± f2, 2*f1 ± f2, 2*f2 ± f1, 3*f1 ± 2*f2, etc.

LO Emission or Feedout: The emergence of the
LO signal from the input of a spectrum analyzer.
The level can be greater than 0 dBm on non-prese-
lected spectrum analyzers but is usually less than -
70 dBm on preselected analyzers.

LO Feedthrough: The response on the display
when a spectrum analyzer is tuned to 0 Hz, i.e.
when the LO is tuned to the IF. The LO
feedthrough can be used as a 0-Hz marker, and
there is no frequency error.
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Linear Display: The display mode in which verti-
cal deflection on the display is directly proportion-
al to the voltage of the input signal. The bottom
line of the graticule represents 0 V, and the top
line, the reference level, some non-zero value that
depends upon the particular spectrum analyzer.
On the Agilent 140 series of analyzers, we select a
specific scale factor in V/div. On most newer ana-
lyzers, we select the reference level, and the scale
factor becomes the reference level value divided by
the number of graticule divisions. Although the
display is linear, analyzers with microprocessors
allow reference level and marker values to be indi-
cated in dBm, dBmV, dBuV, and, in some cases,
watts as well as volts.

Log Display: The display mode in which vertical
deflection on the display is a logarithmic function
of the voltage of the input signal. We set the dis-
play calibration by selecting the value of the top
line of the graticule, the reference level, and scale
factor in dB/div. On Agilent analyzers, the bottom
line of the graticule represents zero volts for scale
factors of 10 dB/div or more, so the bottom divi-
sion is not calibrated in these cases. Analyzers
with microprocessors allow reference level and
marker values to be indicated in dBm, dBmV,
dBuV, volts, and, in some cases, watts. Non-micro-
processor based analyzers usually offer only one
choice of units, and dBm is the usual choice.

Marker: A visible indicator that we can place any-
where along the CRT trace. A read out indicates
the absolute value of both the frequency and
amplitude of the trace at the marked point. The
amplitude value is given in the currently selected
units. Also see Delta Marker and Noise Marker.

Measurement Range: The ratio, expressed in dB,
of the maximum signal level that can be measured
(usually the maximum safe input level) to the low-
est achievable average noise level. This ratio is
almost always much greater than can be realized
in a single measurement. See Dynamic Range.

Mixing Mode: A description of the particular cir-
cumstance that creates a given response on a spec-
trum analyzer. The mixing mode, e.g. 1+, indicates
the harmonic of the LO used in the mixing process
and whether the input signal is above (+) or below
(-) that harmonic.

Multiple Responses: Two or more responses on a
spectrum analyzer display from a single input sig-
nal. Multiple responses occur only when mixing
modes overlap and the LO is swept over a wide
enough range to allow the input signal to mix on
more that one mixing mode. Normally not encoun-
tered in analyzers with preselectors.

Neg Peak: For digital displays, the display detec-
tion mode in which each displayed point indicates
the minimum value of the video signal for that
part of the frequency span and/or time interval
represented by the point.

Noise figure: The ratio, usually expressed in dB, of
the signal-to-noise ratio at the input of a device
(mixer, amplifier) to the signal-to-noise ratio at the
output of the device.

Noise Marker: A marker whose value indicates the
noise level in a 1-Hz noise power bandwidth. When
the noise marker is selected, the sample display
detection mode is activated, the values of a num-
ber of consecutive trace points (the number
depends upon the analyzer) about the marker are
averaged, and this average value is normalized to
an equivalent value in a 1-Hz noise power band-
width. The normalization process accounts for
detection and bandwidth plus the effect of the log
amplifier when we select the log display mode.

Noise Sidebands: Modulation sidebands that indi-
cate the short-term instability of the LO (primarily
the first LO) system of a spectrum analyzer. The
modulating signal is noise, in the LO circuit itself
and/or in the LO stabilizing circuit, and the side-
bands comprise a noise spectrum. The mixing
process transfers any LO instability to the mixing
products, so the noise sidebands appear on any
spectral component displayed on the analyzer far
enough above the broadband noise floor. Because
the sidebands are noise, their level relative to a
spectral component is a function of resolution
bandwidth. Noise sidebands are typically specified
in terms of dBc/Hz (amplitude in a 1-Hz band-
width relative to the -carrier) at a given offset from
the carrier, the carrier being a spectral component
viewed on the display.
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Phase Noise: See Noise Sidebands.

Pos Peak: For digital displays, the display detec-
tion mode in which each displayed point indicates
the maximum value of the video signal for that
part of the frequency span and/or time interval
represented by the point.

Preamplifier: An external, low-noise-figure ampli-
fier that improves system (preamplifier/spectrum
analyzer) sensitivity over that of the analyzer itself.

Preselector: A tunable, bandpass filter that pre-
cedes the input mixer of a spectrum analyzer and
tracks the appropriate mixing mode. Preselectors
are typically used only above 2 GHz. They essen-
tially eliminate multiple and image responses and,
for certain signal conditions, improve dynamic
range.

Raster Display: A TV-like display in which the
image is formed by scanning the electron beam
rapidly across and slowly down the CRT face and
gating the beam on as appropriate. The scanning
rates are fast enough to produce a flicker-free dis-
play. Also see Vector Display and Sweep Time.

Reference Level: The calibrated vertical position
on the display used as a reference for amplitude
measurements. The reference level position is nor-
mally the top line of the graticule, but on 71000
spectrum analyzers the reference level position
may be located anywhere.

Relative Amplitude Accuracy: The uncertainty of
an amplitude measurement in which the amplitude
of one signal is compared to the amplitude of
another regardless of the absolute amplitude of
either. Distortion measurements are relative mea-
surements. Contributors to uncertainty include
frequency response and display fidelity and
changes of input attenuation, IF gain, scale factor,
and resolution bandwidth.

Residual FM: The inherent short-term frequency
instability of an oscillator in the absence of any
other modulation. In the case of a spectrum ana-
lyzer, we usually expand the definition to include
the case in which the LO is swept. Residual FM is
usually specified in peak-to-peak values because
they are most easily measured on the display if vis-
ible at all.

Residual Responses: Discrete responses seen on a
spectrum analyzer display with no input signal
present.

Resolution: See Frequency Resolution.

Resolution Bandwidth: The width of the resolu-
tion bandwidth (IF) filter of a spectrum analyzer
at some level below the minimum insertion-loss
point (maximum deflection point on the display).
For Agilent analyzers, the 3-dB bandwidth is speci-
fied; for some others, it is the 6-dB bandwidth.

Rosenfell: For digital displays, the display detec-
tion mode in which the value displayed at each
point is based upon whether or not the video sig-
nal both rose and fell during the frequency and/or
time interval represented by the point. If the video
signal only rose or only fell, the maximum value is
displayed. If the video signal did both rise and fall,
then the maximum value during the interval is dis-
played by odd-numbered points, the minimum
value, by even-numbered points. To prevent the
loss of a signal that occurs only in an even-num-
bered interval, the maximum value during this
interval is preserved, and in the next (odd-num-
bered) interval, the displayed value is the greater
of the value carried over or the maximum that
occurs in the current interval.

Sample: For digital displays, the display detection
mode in which the value displayed at each point is
the instantaneous value of the video signal at the
end of the frequency span and/or time interval
represented by the point.

Scale Factor: The per-division calibration of the
vertical axis of the display.
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Sensitivity: The level of the smallest sinusoid that
can be observed on a spectrum analyzer, usually
under optimized conditions of minimum resolution
bandwidth, 0 dB RF input attenuation, and mini-
mum video bandwidth. Agilent defines sensitivity
as the displayed average noise level. A sinusoid at
that level will appear to be about 2 dB above the
noise.

Shape Factor: See Bandwidth Selectivity.

Signal Identification: A routine, either manual or
automatic, that indicates whether or not a particu-
lar response on the spectrum analyzer’s display is
from the mixing mode for which the display is cali-
brated. If automatic, the routine may change the
analyzer’s tuning to show the signal on the correct
mixing mode, or it may tell us the signal's frequen-
cy and give us the option of ignoring the signal or
having the analyzer tune itself properly for the sig-
nal. Generally not needed on preselected analyz-
ers.

Span Accuracy: The uncertainty of the indicated
frequency separation of any two signals on the dis-
play.

Spectral Purity: See Noise Sidebands.

Spectral Component: One of the sine waves com-
prising a spectrum.

Spectrum: An array of sine waves of differing fre-
quencies and amplitudes and properly related with
respect to phase that, taken as a whole, constitute
a particular time-domain signal.

Spectrum Analyzer: A device that effectively per-
forms a Fourier transform and displays the indi-
vidual spectral components (sine waves) that con-
stitute a time-domain signal. Phase may, or may
not, be preserved, depending upon the analyzer
type and design.

Spurious Responses: The improper responses that
appear on a spectrum analyzer display as a result
of the input signal. Internally generated distortion
products are spurious responses, as are image and
multiple responses.

Sweep Time: The time to tune the LO across the
selected span. Sweep time does not include the
dead time between the completion of one sweep
and the start of the next. In zero span, the spec-
trum analyzer’s LO is fixed, so the horizontal axis
of the display is calibrated in time only. In non-
zero spans, the horizontal axis is calibrated in both
frequency and time, and sweep time is usually a
function of frequency span, resolution bandwidth,
and video bandwidth.

Units: Dimensions on the measured quantities.
Units usually refer to amplitude quantities because
they can be changed. In spectrum analyzers with
microprocessors, available units are dBm (dB rela-
tive to 1 milliwatt dissipated in the nominal input
impedance of the analyzer), dBmV (dB relative to 1
millivolt), dBuV (dB relative to 1 microvolt), volts,
and, in some analyzers, watts. In AGILENT analyz-
ers, we can specify any units in both log and linear
displays.

Variable Persistence: That property of a CRT that
allows adjustment of the fade rate of a trace creat-
ed by the CRTs electron beam. For purely analog
displays. Used in the Agilent 141T Spectrum
Analyzer Mainframe for flicker-free displays
regardless of sweep time.

Vector Display: 
The CRT in which the electron beam is directed so
that the image (trace, graticule, annotation) is
written directly on the CRT face, not created from
a series of dots as in the raster display.
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Video: In a spectrum analyzer, a term describing
the output of the envelope detector. The frequency
range extends from 0 Hz to a frequency typically
well beyond the widest resolution bandwidth avail-
able in the analyzer. However, the ultimate band-
width of the video chain is determined by the set-
ting of the video filter.

Video Amplifier: A post-detection, dc-coupled
amplifier that drives the vertical deflection plates
of the CRT. See Video Bandwidth and Video Filter.

Video Average: A digital averaging of a spectrum
analyzer’s trace information. Available only on
analyzers with digital displays. The averaging is
done at each point of the display independently
and is completed over the number of sweeps
selected by the user. The averaging algorithm
applies a weighting factor (1/n, where n is the
number of the current sweep) to the amplitude
value of a given point on the current sweep,
applies another weighting factor [(n - 1)/n] to the
previously stored average, and combines the two
for a current average. After the designated number
if sweeps are completed, the weighting factors
remain constant, and the display becomes a run-
ning average.

Video Bandwidth: The cutoff frequency (3-dB
point) of an adjustable low pass filter in the-video
circuit. When the video bandwidth is equal to or
less than the resolution bandwidth, the video cir-
cuit cannot fully respond to the more rapid fluctu-
ations of the output of the envelope detector. The
result is a smoothing of the trace, i.e. a reduction
in the peak-to-peak excursion of broadband signals
such as noise and pulsed RF when viewed in the
broadband mode. The degree of averaging or
smoothing is a function of the ratio of the video
bandwidth to the resolution bandwidth.

Video Filter: A post-detection, low-pass filter that
determines the bandwidth of the video amplifier.
Used to average or smooth a trace. See Video
Bandwidth.

Zero Span: That case in which a spectrum analyz-
er’s LO remains fixed at a given frequency so the
analyzer becomes a fixed-tuned receiver. The band-
width of the receiver is that of the resolution (IF)
bandwidth. Signal amplitude variations are dis-
played as a function of time. To avoid any loss of
signal information, the resolution bandwidth must
be as wide as the signal bandwidth. To avoid any
smoothing, the video bandwidth must be set wider
than the resolution bandwidth.
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