LECTURE 18: PLANAR ARRAYS, CIRCULAR ARRAYS

1. Planar arrays

Planar arrays are more versatile; they provide more symmetrical patterns with lower side lobes, much higher directivity (narrow main beam). They can be used to scan the main beam toward any point in space.

Applications - tracking radars, remote sensing, communications, etc.
1.1 The array factor of a rectangular planar array

Fig. 6.23(b), pp.310, Balanis

The AF of a linear array of M elements along the x-axis is:

$$
\begin{equation*}
A F_{x 1}=\sum_{m=1}^{M} I_{m 1} e^{j(m-1)\left(k d \sin \theta \cos \phi+\beta_{x}\right)} \tag{18.1}
\end{equation*}
$$

where $\sin \theta \cos \phi=\cos \gamma_{x}$ is the directional cosine with respect to the x-axis. It is assumed that all elements are equispaced with an interval of d_{x} and a progressive shift $\beta_{x} . I_{m 1}$ denotes the excitation amplitude of the element at the point with coordinates: $x=(m-1) d_{x}, y=0$. In the figure above, this is the element of the m-th row and the $1^{\text {st }}$ column of the array matrix.

If N such arrays are placed next to each other in the y direction, a rectangular array will be formed. We shall assume again that they are equispaced at a distance of d_{y} and there is a progressive phase shift along each row of β_{y}. It will be also assumed that the normalized current distribution along each of the x-directed array is the same but the absolute values correspond to a factor of $I_{1 n}(n=1, \ldots, N)$. Then, the AF of the entire array will be:

$$
\begin{equation*}
A F=\sum_{n=1}^{N} I_{1 n}\left[\sum_{m=1}^{N} I_{m 1} e^{j(m-1)\left(k d_{x} \sin \theta \cos \phi+\beta_{x}\right)}\right] e^{j(n-1)\left(k d_{y} \sin \theta \cos \phi+\beta_{y}\right)} \tag{18.2}
\end{equation*}
$$

or

$$
\begin{equation*}
A F=S_{x_{M}} \cdot S_{y_{N}} \tag{18.3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& S_{x_{M}}=A F_{x 1}=\sum_{m=1}^{M} I_{m 1} e^{j(m-1)\left(k d \sin \theta \cos \phi+\beta_{x}\right)}, \text { and } \\
& S_{y_{N}}=A F_{1 y}=\sum_{n=1}^{N} I_{1 n} e^{j(n-1)\left(k d_{y} \sin \theta \sin \phi+\beta_{y}\right)}
\end{aligned}
$$

In the array factors above:

$$
\begin{align*}
& \sin \theta \cos \phi=\hat{x} \cdot \hat{r}=\cos \gamma_{x} \\
& \sin \theta \sin \phi=\hat{y} \cdot \hat{r}=\cos \gamma_{y} \tag{18.4}
\end{align*}
$$

The pattern of a rectangular array is the product of the array factors of the linear arrays in the x and y directions.

For a uniform planar (rectangular) array $I_{m 1}=I_{1 n}=I_{0}$, for all m and n, i.e., all elements have the same excitation amplitudes.

$$
\begin{equation*}
A F=I_{0} \sum_{n=1}^{N} e^{j(m-1)\left(k d_{x} \sin \theta \cos \phi+\beta_{x}\right)} \sum_{n=1}^{N} e^{j(n-1)\left(k d_{y} \sin \theta \sin \phi+\beta_{y}\right)} \tag{18.5}
\end{equation*}
$$

The normalized array factor can be obtained as:

$$
\begin{equation*}
A F_{n}(\theta, \phi)=\left\{\frac{1}{M} \frac{\sin \left(M \frac{\psi_{x}}{2}\right)}{\sin \left(\frac{\psi_{x}}{2}\right)}\right\}\left\{\frac{1}{N} \frac{\sin \left(N \frac{\psi_{y}}{2}\right)}{\sin \left(\frac{\psi_{y}}{2}\right)}\right\}, \tag{18.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \psi_{x}=k d_{x} \sin \theta \cos \phi+\beta_{x} \\
& \psi_{y}=k d_{y} \sin \theta \sin \phi+\beta_{y}
\end{aligned}
$$

The major lobe (principal maximum) and grating lobes of the terms:

$$
\begin{align*}
& S_{x_{M}}=\frac{1}{M} \frac{\sin \left(M \frac{\psi_{x}}{2}\right)}{\sin \left(\frac{\psi_{x}}{2}\right)} \tag{18.7}\\
& S_{y_{N}}=\frac{1}{N} \frac{\sin \left(N \frac{\psi_{y}}{2}\right)}{\sin \left(\frac{\psi_{y}}{2}\right)} \tag{18.8}
\end{align*}
$$

are located at angles such that:

$$
\begin{align*}
k d_{x} \sin \theta_{m} \cos \phi_{m}+\beta_{x} & = \pm 2 m \pi, \quad m=0,1, \ldots \tag{18.9}\\
k d_{y} \sin \theta_{n} \sin \phi_{n}+\beta_{y} & = \pm 2 n \pi, \quad n=0,1, \ldots \tag{18.10}
\end{align*}
$$

The principal maxima correspond to $m=0, n=0$.

In general, β_{x} and β_{y} are independent from each other. But, if it is required that the main beams of $S_{x_{M}}$ and $S_{y_{N}}$ intersect (which is usually the case), then the common main beam is in the direction:

$$
\begin{equation*}
\theta=\theta_{0} \text { and } \phi=\phi_{0}, m=n=0 \tag{18.11}
\end{equation*}
$$

If the principal maximum is specified by $\left(\theta_{0}, \phi_{0}\right)$, then the progressive phases β_{x} and β_{y} must satisfy:

$$
\begin{align*}
& \beta_{x}=-k d_{x} \sin \theta_{0} \cos \phi_{0} \tag{18.12}\\
& \beta_{y}=-k d_{y} \sin \theta_{0} \sin \phi_{0} \tag{18.13}
\end{align*}
$$

When β_{x} and β_{y} are specified, the direction of the main beam can be found by simultaneously solving (18.12) and (18.13):

$$
\begin{gather*}
\tan \phi_{0}=\frac{\beta_{y} d_{x}}{\beta_{x} d_{y}} \tag{18.14}\\
\sin \theta_{0}= \pm \sqrt{\left(\frac{\beta_{x}}{k d_{x}}\right)^{2}+\left(\frac{\beta_{y}}{k d_{y}}\right)^{2}} \tag{18.15}
\end{gather*}
$$

The grating lobes can be located by substituting (18.12) and (18.13) in (18.9) and (18.10):

$$
\begin{gather*}
\tan \phi_{m n}=\frac{\sin \theta_{0} \sin \phi_{0} \pm n \lambda / d_{y}}{\sin \theta_{0} \cos \phi_{0} \pm m \lambda / d_{x}} \tag{18.16}\\
\sin \theta_{m n}=\frac{\sin \theta_{0} \cos \phi_{0} \pm m \lambda / d_{x}}{\cos \phi_{m n}}=\frac{\sin \theta_{0} \sin \phi_{0} \pm n \lambda / d_{y}}{\sin \phi_{m n}} \tag{18.17}
\end{gather*}
$$

To avoid grating lobes, the spacing between the elements must be less than $\lambda\left(d_{y}<\lambda\right.$ and $\left.d_{y}<\lambda\right)$. In order a true grating lobe to occur, both equations (18.16) and (18.17) must have a real solution $\left(\theta_{m n}, \phi_{m n}\right)$.

3-D pattern of a 5-element square planar uniform array without grating lobes $\left(d=\lambda / 4, \beta_{x}=\beta_{y}=0\right)$:

Fig. 6.24, pp. 313 Balanis

3-D pattern of a 5 -element square planar uniform array without grating lobes $\left(d=\lambda / 2, \beta_{x}=\beta_{y}=0\right)$:

Fig. 6.25, pp.314, Balanis
Notice the considerable decrease in the beamwidth as the spacing is increased from $\lambda / 4$ to $\lambda / 2$.

1.2 The beamwidth of a planar array

A simple procedure, proposed by R.S. Elliot ${ }^{1}$ will be outlined. It is based on the use of the beamwidths of the linear arrays building the planar array.

For a large array, whose maximum is near the broad side, the elevation plane HPBW is approximately:

$$
\begin{equation*}
\theta_{h}=\sqrt{\frac{1}{\cos ^{2} \theta_{0}\left[\Delta \theta_{x}^{-2} \cos ^{2} \phi_{0}+\Delta \theta_{y}^{-2} \sin ^{2} \phi_{0}\right]}} \tag{18.18}
\end{equation*}
$$

[^0]where: $\left(\theta_{0}, \phi_{0}\right)$ specify the main-beam direction;
$\Delta \theta_{x} \quad$ is the HPBW of a linear broadside array whose number of elements M and amplitude distribution is the same as that of the x-axis linear arrays building the planar array;
$\Delta \theta_{y} \quad$ is the HPBW of a linear BSA whose number of elements N and amplitude distribution is the same as those of the y-axis linear arrays building the planar array.

The HPBW in the plane, which is orthogonal to the $\phi=\phi_{0}$ plane and contains the maximum, is:

$$
\begin{equation*}
\phi_{h}=\sqrt{\frac{1}{\Delta \theta_{x}^{-2} \sin ^{2} \phi_{0}+\Delta \theta_{y}^{-2} \cos ^{2} \phi_{0}}} \tag{18.19}
\end{equation*}
$$

For a square array $(M=N)$ with amplitude distributions along the x and y axes of the same type, equations (18.18) and (18.19) reduce to:

$$
\begin{gather*}
\theta_{h}=\frac{\Delta \theta_{x}}{\cos \theta_{0}}=\frac{\Delta \theta_{y}}{\cos \theta_{0}} \tag{18.20}\\
\phi_{h}=\Delta \theta_{x}=\Delta \theta_{y} \tag{18.21}
\end{gather*}
$$

From (18.20), it is obvious that the HPBW in the elevation plane very much depends on the elevation angle θ_{0} of the main beam. The HPBW in the azimuthal plane ϕ_{h} does not depend on the elevation angle θ_{0}.

The beam solid angle of the planar array can be approximated by:

$$
\begin{equation*}
\Omega_{A}=\theta_{h} \phi_{h} \tag{18.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\Omega_{A}=\frac{\Delta \theta_{x} \Delta \theta_{y}}{\cos ^{2} \theta_{0} \sqrt{\left[\sin ^{2} \phi_{0}+\frac{\Delta \theta_{y}^{2}}{\Delta \theta_{x}^{2}} \cos ^{2} \phi_{0}\right]\left[\sin ^{2} \phi_{0}+\frac{\Delta \theta_{x}^{2}}{\Delta \theta_{y}^{2}} \cos ^{2} \phi_{0}\right]}} \tag{18.23}
\end{equation*}
$$

1.3 Directivity

The general expression for the calculation of the directivity of an array is:

$$
\begin{equation*}
D_{0}=4 \pi \frac{\left|A F\left(\theta_{0}, \phi_{0}\right)\right|^{2}}{\int_{0}^{2 \pi} \int_{0}^{\pi}\left|A F\left(\theta_{0}, \phi_{0}\right)\right|^{2} \sin \theta d \theta d \phi} \tag{18.24}
\end{equation*}
$$

For large planar arrays, which are nearly broadside, (18.24) reduces to:

$$
\begin{equation*}
D_{0}=\pi D_{x} D_{y} \cos \theta_{0} \tag{18.25}
\end{equation*}
$$

where $\quad D_{x}$ is the directivity of the respective linear BSA, x-axis; D_{y} is the directivity of the respective linear BSA, y-axis.

One can also use the array solid beam angle Ω_{A} in (18.23) to calculate the approximate directivity of a nearly broadside planar array:

$$
\begin{equation*}
D_{0} \simeq \frac{\pi^{2}}{\Omega_{A[S r]}} \simeq \frac{32400}{\Omega_{A\left[\operatorname{deg}^{2}\right]}} \tag{18.26}
\end{equation*}
$$

Remember:

1) The main beam direction is controlled through the phase shifts, β_{x} and β_{y}.
2) The beamwidth and side-lobe levels are controlled through the amplitude distribution.
2. Circular array

2.1 Array factor

The normalized field can be written as:

$$
\begin{equation*}
E(r, \theta, \phi)=\sum_{n=1}^{N} a_{n} \frac{e^{-j k R_{n}}}{R_{n}} \tag{18.27}
\end{equation*}
$$

where:

$$
\begin{equation*}
R_{n}=\sqrt{r^{2}+a^{2}-2 a r \cos \psi_{n}} \tag{18.28}
\end{equation*}
$$

For $r \gg a$, (18.28) reduces to:

$$
\begin{equation*}
R_{n} \simeq r-a \cos \psi_{n} \simeq r-a\left(\hat{a}_{\rho_{n}} \cdot \hat{r}\right) \tag{18.29}
\end{equation*}
$$

In rectangular coordinate system:

$$
\left\lvert\, \begin{aligned}
& \hat{a}_{\rho_{n}}=\hat{x} \cos \phi_{n}+\hat{y} \sin \phi_{n} \\
& \hat{r}=\hat{x} \sin \theta \cos \phi+\hat{y} \sin \theta \sin \phi+\hat{z} \cos \theta
\end{aligned}\right.
$$

Therefore:

$$
\begin{equation*}
R_{n}=r-a \sin \theta\left(\cos \phi_{n} \cos \phi+\sin \phi_{n} \sin \phi\right) \tag{18.30}
\end{equation*}
$$

Finally, R_{n} is approximated in the phase terms as:

$$
\begin{equation*}
R_{n}=r-a \sin \theta \cos \left(\phi-\phi_{n}\right) \tag{18.31}
\end{equation*}
$$

For the amplitude term, the approximation

$$
\begin{equation*}
\frac{1}{R_{n}} \simeq \frac{1}{r}, \text { all } n \tag{18.32}
\end{equation*}
$$

is made.
Assuming the approximations (18.31) and (18.32) are valid, the far-zone array field is reduced to:

$$
\begin{equation*}
E(r, \theta, \phi)=\frac{e^{-j k r}}{r} \sum_{n=1}^{N} a_{n} e^{j k a \sin \theta \cos \left(\phi-\phi_{n}\right)} \tag{18.33}
\end{equation*}
$$

where: a_{n} is the excitation coefficient (amplitude and phase);

$$
\phi_{n}=\frac{2 \pi}{N} n \quad \text { is the angular position of the } n \text {-th element. }
$$

In general, the excitation coefficient can be represented as:

$$
\begin{equation*}
a=I_{n} e^{j \alpha_{n}} \tag{18.34}
\end{equation*}
$$

where I_{n} is the amplitude term, and α_{n} is the phase of the excitation of the n-th element relative to a chosen array element of zero phase.

$$
\begin{equation*}
\Rightarrow E(r, \theta, \phi)=\frac{e^{-j k r}}{r} \sum_{n=1}^{N} I_{n} e^{j\left[k a \sin \theta \cos \left(\phi-\phi_{n}\right)+\alpha_{n}\right]} \tag{18.35}
\end{equation*}
$$

The AF is obtained as:

$$
\begin{equation*}
A F(\theta, \phi)=\sum_{n=1}^{N} I_{n} e^{j\left[k a \sin \theta \cos \left(\phi-\phi_{n}\right)+\alpha_{n}\right]} \tag{18.36}
\end{equation*}
$$

Expression (18.36) represents the AF of a circular array of N equispaced elements. The maximum of the AF occurs when all the phase terms in (18.36) equal unity, or:

$$
\begin{equation*}
k a \sin \theta \cos \left(\phi-\phi_{n}\right)+\alpha_{n}=2 m \pi, \quad m=0, \pm 1, \pm 2, \text { all } n \tag{18.37}
\end{equation*}
$$

The principal maximum ($m=0$) is defined by the direction $\left(\theta_{0}, \phi_{0}\right)$, for which:

$$
\begin{equation*}
\alpha_{n}=-k a \sin \theta_{0} \cos \left(\phi_{0}-\phi_{n}\right), \quad n=1,2, \ldots, N \tag{18.38}
\end{equation*}
$$

If a circular array is required to have maximum radiation in the direction $\left(\theta_{0}, \phi_{0}\right)$, then the phases of its excitations will have to fulfil (18.38). The AF of such an array is:

$$
\begin{gather*}
A F(\theta, \phi)=\sum_{n=1}^{N} I_{n} e^{j k a\left[\sin \theta \cos \left(\phi-\phi_{n}\right)-\sin \theta_{0} \cos \left(\phi_{0}-\phi_{n}\right)\right]} \tag{18.39}\\
A F(\theta, \phi)=\sum_{n=1}^{N} I_{n} e^{j k a\left(\cos \psi_{n}-\cos \psi_{0 n}\right)} \tag{18.40}
\end{gather*}
$$

Here:
$\psi_{n}=\cos ^{-1}\left[\sin \theta \cos \left(\phi-\phi_{n}\right)\right] \quad$ is the angle between \hat{r} and $\hat{a}_{\rho_{n}}$;
$\psi_{0_{n}}=\cos ^{-1}\left[\sin \theta_{0} \cos \left(\phi_{0}-\phi_{n}\right)\right]$ is the angle between $\hat{a}_{\rho_{n}}$ and $\hat{r}_{\max }$ pointing in the direction of maximum radiation.

As the radius of the array a becomes very large as compared to λ, the directivity of the uniform circular array $\left(I_{n}=I_{0}\right.$, all n) approaches the value of N.

Uniform circular array 3-D pattern ($N=10, k a=\frac{2 \pi}{\lambda} a=10$)

[^0]: 1 "Beamwidth and directivity of large scanning arrays", The Microwave Journal, Jan. 1964, pp.74-82

