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Friis Transmission Equation and the Radar Range Equation

1. Other antenna equivalent areas

Before, we have defined the antenna effective area (or effective aperture) as the area,
which when multiplied by the incident wave power density, produces the power delivered
to the load (the terminals of the antenna) AP . In a very similar manner, one can define

the antenna scattering area sA . It is the area, which when multiplied with the incident

wave power density, produces the re-radiated (scattered) power.
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In the case of conjugate matching:
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The loss area is the area, which when multiplied by the incident wave power density,
produces the dissipated (as heat) power of the antenna.
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In the case of conjugate matching:
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The capture area is the area, which when multiplied with the incident wave power
density, produces the total power intercepted by the antenna.
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In the case of conjugate matching:
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Always, the capture area is the sum of the effective area, the loss area and the scattering
area:

c e l sA A A A= + + (6.7)

When conjugate matching is achieved:
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If conjugate matching is achieved for a loss-free antenna, then
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2. Friis transmission equation

The analysis and design of wireless communication systems requires the use of the Friis
transmission equation. It relates the power, which is fed to the transmitting antenna, to
the power, which is received by the receiving antenna, when the two antennas are

separated by a large enough distance ( 2
max2 /R D λ>> ). This means that the two antennas

are positioned in each other’s far zones. Friis transmission equation will be derived
below.

A transmitting antenna produces power density ( , )t t tW θ ϕ in the direction ( , )t tθ ϕ . This

power density depends on the transmitting antenna gain in the given direction ( , )t tG θ ϕ ,

on the power of the transmitter tP fed to it, and on the distance R between the antenna

and the observation point as:
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Here, te denotes the radiation efficiency of the transmitting antenna, and tD is its

directivity. Assume that R is exactly the distance between the transmitting and the
receiving antennas. Then, (6.10) gives the power density produced by the transmitting
antenna in the location of the receiving antenna.
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The power at the terminals of the receiving antenna can be expressed via its effective area

rA and tW :

r r tP A W= (6.11)

To include polarization losses and heat losses in the receiving antenna, one should add
the radiation efficiency factor of the receiving antenna re and the PLF:
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Here, re is the radiation efficiency of the receiving antenna, and rD is its directivity.

The signal is incident onto the receiving antenna from a direction ( , )r rθ ϕ , which is
defined in the coordinate system of the receiving antenna.
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The ratio of the received to the transmitted power is obtained as:
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If the impedance-mismatch loss factor is to be included in both, the receiving and the
transmitting antenna systems, the above ratio has to be given as:
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The above equations are variations of Friis transmission equation, which is well known in
the theory of EM wave propagation.

For the case of impedance matched and polarization matched transmitting and receiving
antennas, Friis equation becomes:
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The factor 2( / 4 )Rλ π is called the free-space loss factor. It reflects the decrease in the
power density due to the spherical spread of the EM wave. Notice that the free-space
loss factor decreases for shorter wavelengths (i.e. for higher frequencies). This is not a
propagation effect but is rather due to the increased effective apertures of the antennas for
shorter wavelengths.

Friis transmission equation is frequently used to calculate the maximum range at which a
wireless link can operate. For that, one needs to know the nominal power of the
transmitter tP , all the parameters of the transmitting and receiving antenna systems (such

as polarization, gain, losses, impedance mismatch), and the minimum power at which the
receiver can operate reliably minrP . Then,
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The minimum power at which the receiver can operate reliably is dependent on numerous
factors, of which very important is the signal to noise ratio (SNR). There are different
sources of noise but we will be mostly concerned with the noise of the antenna itself.
This topic will be considered in the next module.

3. Radar range equation

Radar cross-section (RCS) or echo area
The RCS is a far-field characteristic of radar targets, which create an echo far field by
scattering (reflecting) the radar EM wave. The RCS of a target σ is the equivalent area
intercepting that amount of power, which when scattered isotropically produces at the
receiver a density, which is equal to that scattered by the target itself:
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Here:
R is the distance from the target, m;

iW is the incident power density, W/m2;

sW is the scattered power density, W/m2.

To understand better the above definition, one can re-write it in an equivalent form as:
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The product iWσ represents some fictitious intercepted power, which is then scattered
(re-radiated) isotropically to create a fictitious spherical wave, whose power density in

the far zone decreases with distance as 21/ R . It is then expected that the above limit is
finite and produces certain scattered power density. This scattered power density must be
equal to the real scattered power density sW produced by the real scatterer (the radar
target).

It should be noted that the RCS has little in common with any of the cross-sections of the
actual scatterer. However, it is very representative of the reflection properties of the
target. It very much depends on the angle of incidence, on the angle of observation, on
the shape of the scatterer, on the EM properties of the matter that it is built of, and on the
wavelength. The RCS of targets is similar to the concept of effective aperture of
antennas.

The radar range equation (RRE) gives the ratio of the transmitted power (fed to the
transmitting antenna) to the received power after it has been scattered (re-radiated) by a
target of cross-section σ .

In the general radar scattering problem, there is a transmitting and a receiving antenna,
and they may be located in different positions as it is shown in figure below. This is
called bistatic scattering. Often, one antenna is used to transmit an EM pulse and to
receive the echo from the target. This case is referred to as monostatic scattering, or
backscattering. Bear in mind that the RCS of a target may considerably differ as the
location of the transmitting and receiving antennas change.



5

( , )t tθ ϕ

tR

( , )r rθ ϕ

rR

We will now derive the radar range equation. Assume that the power density of the
transmitted wave at the target location is tW , where
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The target is represented by its RCS σ , which is used to calculate the captured power

c tP Wσ= (W), which when scattered isotropically will give the power density at the
receiving antenna that is actually created by the target. The density of the re-radiated
(scattered) power at the receiving antenna is:
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The power transferred to the receiver is:
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Re-arranging and including impedance mismatch losses as well as polarization losses,
yields the complete radar range equation:
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For polarization matched loss-free antennas aligned for maximum directional radiation
and reception:
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The radar range equation is often used to calculate the maximum range of a radar system.
As in the case of Friis transmission equation, one needs to know all the parameters of
both, the transmitting and the receiving antennas, as well as the minimum receive power
at which the receiver operates reliably. Then,
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Finally, it should be noted that the above information on RCS and radar range
calculations are only basic information on radar systems and electromagnetic scattering.
Both of these subjects represent huge research areas by themselves, and are not going to
be considered in detail in this course.


