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Statistical Modeling of Small-Scale Fading in
Directional Radio Channels
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Abstract—After a brief review of the known description
of time-variant channels by means of system and correlation
functions, a consistent extension of this description to directional
time-variant channels is described in the present paper. This ex-
tension allows a clear distinction between time- and space-variant
effects in directional mobile radio channels. The major intention
of the described directional extension however is the derivation
of a statistical modeling approach for small-scale fading effects
in time-variant wideband directional channels, which can be re-
garded as a consistent extension of the well established Rayleigh-
or Rice-fading approach for nondirectional time-variant nar-
rowband channels. The approach, which is based on the time
and aperture-variant transfer function, appears to be preferable
to the frequently used statistical modeling of the time-variant
angle-resolved impulse response for several reasons. The major
advantage is that the approach can cope with the demand for
a great number of superimposing components as the basis for
statistical modeling. The correlation between adjacent values is
proposed to be achieved by filtering with appropriate directional
scattering functions. The description of the modeling approach, as
done in the present paper, is intended to be general and universal;
for the application on certain channel types statistical distribution
functions and parameters to be used with the approach can readily
be determined from appropriate measurements.

Index Terms—Channel modeling, directional channels, di-
rectional WSSUS, small-scale fading, statistical modeling,
time-variant channels.

I. INTRODUCTION

SMALL-SCALE fading in multipath channels occurs due to
the coherent superposition of a great number of multipath

components, each having a different phase variation over time
or frequency. The basic and probably mostly well known model
for time-variant multipath channels, which has often been called
Rayleigh- or Rice-fading model, describes the time-variant fluc-
tuations of the amplitude and phase values by statistical distribu-
tion functions. This model originally referred to the fluctuations
of a continuous-wave (CW) signal received via a time-variant
multipath channel and, thus, basically, it is a narrowband model.
For frequency selective (i.e., wideband) channels, a commonly
accepted extension of the Rayleigh- or Rice-fading model is
the assumption of Rayleigh or Ricean fading for contributions
at different delay times in the time-variant impulse response,
which results in a tapped delay line model with Rayleigh- or
Rice-fading taps.
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Since it depends on the bandwidth which components actu-
ally superimpose for the different “paths” in the time-variant im-
pulse response, the parameters for the tapped delay line models
are however valid only for a certain bandwidth. Even more,
since an increasing number of multipath components can be
resolved in the time-variant impulse response with increased
bandwidth, increasingly less multipath components superim-
pose and, thus, a statistical modeling of the time-variant fluctua-
tions, which demands for the superposition of a great number of
components, becomes questionable. One approach to overcome
these disadvantages is a statistical channel model based on the
time-variant transfer function, as proposed in [1].

During recent years, the activities in measurement and mod-
eling of radio channels in mobile communications engineering
have mainly focused on directional channels, aiming at the
development of smart antennas for the capacity enhancement
of existing and future systems. Several modeling approaches
for directional channels have been presented in the last few
years [2], [3]; one that has become very popular is the geom-
etry-based stochastic model [4]. A lot of European work in this
field has concentrated in a COST 259 Working Group with
the aim to unify different approaches and to find appropriate
parameters [3]. Major attention in directional channel descrip-
tion is focused on the appropriate modeling of “azimuth-delay
power spectra” (ADPS) by deriving these spectra from spatially
random distributed scatterers with certain distributions for
different environments. As will be outlined in the present paper,
the ADPS contains information about certain “correlations”
in the system functions of the channel, but it does not contain
information about actually occurring amplitude and phase
values in the system functions itself when, e.g., the mobile
station or scatterers are moving.

With respect to temporal variations for a moving mobile sta-
tion, one approach is the assumption of a statistically fading en-
velope for the components of the time-variant angle-resolved
impulse response [5], [6]. As mentioned before, a statistical
modeling of temporal variations in the impulse response is ques-
tionable however when more and more components are resolved
by an increased bandwidth. For directional channel models this
problem even increases, since now the components are addition-
ally resolved by their angle of incidence. For a reliable statis-
tical modeling of small-scale variations, thus, another system
function has to be taken into account, which can be found from
a consistent extension of the ideas in [1] to directional chan-
nels, as done in Section II-B of the present paper. This leads to
the modeling approach described in Section III, which allows a
more universal wideband modeling of directional time-variant
channels regardless of their bandwidth.
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Fig. 1. System functions for time-variantnondirectional channels and their
relations by Fourier transforms.

II. SYSTEM AND CORRELATION FUNCTIONS

A. Time-Variant Linear Channels

Time-variant linear channels can be described by means of
their system and correlation functions. This method of descrip-
tion has first been presented in a complete and evident formula-
tion by Bello [7]. The relations between the system and correla-
tion functions, as far as they are essential for understanding the
directional extension in Section II-B, will be briefly reviewed
in the following. Note that in view of the interpretation of the
system functions in the present paper somewhat different deno-
tations than those introduced by Bello are used. For the correla-
tion functions however, Bello’s denotations are kept.

The most popular of the system functions in context with
mobile radio channels probably is thetime-variant impulse re-
sponse . From this function, the other system functions
can be derived by Fourier transforms with respect to either the
time or the delay , such that the four system functions [7],
[1] are related to each other by Fourier transforms in a cyclic
manner as depicted in Fig. 1. A more detailed investigation of
these functions, especially when taking into account the under-
lying physical propagation process and the results from mea-
surements [1], reveals that for the respective system functions
multipath components occurresolvedwith respect to different
Doppler shifts and different delays . With respect to time

or frequency all unresolved components superimpose co-
herently, which leads totime- or frequency-variantfluctuations
(fading) due to different variations of the phase of the different
components. The “resolution” is always determined by the ex-
tent of the observation interval (e.g., during measurement or
simulation) with respect toand [1]. Taking into account these
properties of the system functions and additionally taking into
account that for time-invariant systems the impulse response
and the transfer function are the basic functions, the denotations
proposed in Fig. 1 appear to be quite meaningful. The knowl-
edge of at least one of the system functions allows a determina-
tion of the output signal of the channel for a known input signal.

Based on each of the four system functions, a related correla-
tion function can be calculated by ensemble averaging [7], [1].
The correlation functions, which are also related to each other
by [in the general case two-dimensional (2-D)] Fourier trans-
forms [7], [1], allow a determination of the correlation function
of the output signal of the channel if either the input signal or
the channel itself is random [7]. Additionally they describe the
correlation properties of the system functions.

In context with mobile radio channels usually wide sense sta-
tionary uncorrelated scattering (WSSUS) is assumed. This as-
sumption is equivalent to wide sense stationarity with respect to
both time and frequency [7], [1] when regarding the proper-
ties of thetime-variant transfer function . Due to this
stationarity the dependence of thetime-frequency correlation
function on four variables in the general case reduces to
a dependence on two variables (the time shiftand the fre-
quency shift ) for a WSSUS channel

(1)

with being the ensemble average. From the relation be-
tween the time-frequency correlation function and thetime-
delay correlation function by a 2-D Fourier transform, the
properties of the time-delay correlation function of a WSSUS
channel can be derived [7], [1] from (1) as

(2)

with being the time-variant impulse response. When re-
garding (2), the WSSUS assumption represents wide sense sta-
tionarity (WSS) with respect to time and uncorrelated scat-
tering (US) with respect to the delay time, as expressed by
the -function in (2). These properties of the time-delay corre-
lation function have led to the designation “WSSUS,” since this
describes the properties of a WSSUS channel completely in the
time domain. The function in (2), which is denoted
asdelay cross-power spectral density, is related to the time-fre-
quency correlation function of a WSSUS channel
by an inverse Fourier transform with respect to[1], [7] . Due
to the -function in (2), the knowledge of the delay cross-power
spectral density is sufficient to determine the correlation func-
tion. Therefore, is often referred to as being a “cor-
relation function” [7] of the WSSUS channel, although in strict
sense it is a power spectral density.

The WSSUS assumption has led to a simplification, since
now the correlation functions are dependent on two variables
rather than four variables in the general case. This leads to sim-
plifications for the input-output relations when using the cor-
relation functions [1], [7]. The other correlation functions of a
WSSUS channel can be derived [1], [7] in a quite similar way as
(2) and it can be shown [1], [7] that the “correlation functions”
are related by Fourier transforms in a cyclic manner as depicted
in Fig. 2. Note however, that in strict sense only is a cor-
relation function, whereas , and are power spectral
densities.
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Fig. 2. Correlation functions for time-variantnondirectional WSSUS channels
and their relations by Fourier transforms.

B. Extension for Directional Time-Variant Channels

A formal extension of the description methods for
time-variant channels to directional time-variant channels
is usually done [3]–[5] by introducing an additional depen-
dence of the time-variant impulse response on the
azimuth angle of incidence of multipath components

(3)

with being denoted astime-variant angle-resolved
impulse response. For reasons of clarity, the description of the
extension in this paper is confined to the azimuth angleat,
e.g., the base station. It can additionally be extended in the same
manner by the elevation angleand also by the angles at the
mobile station, i.e., . As
mentioned in Section II-A, further system functions of time-
variant channels can be derived from by Fourier trans-
forms with respect to either the timeor the delay . Thus, for
directional time-variant channels further system functions will
result from by Fourier transforms with respect to ei-
ther the time, the delay or the angle . The relations between
time and Doppler shift as well as between frequencyand
delay will remain the same as for (nondirectional) time-variant
channels; thus, we have to consider now the relation resulting
from a Fourier transform with respect to. It is known from an-
tenna theory that the far-field distribution is related to
the one-dimensional (1-D) aperture distribution by the
Fourier transform [8]

(4)

For a finite aperture of extent equation (4) may be written
[8]

(5)

This means for the system functions of directional
time-variant channels that a Fourier transform with re-
spect to the angle leads to system functions in a domain that
can be reasonably denoted as the “aperture domain.” Taking
into account the linearity of the Fourier transform, multipath
components arriving with different angles in the angular
domain therefore will superimpose coherently in the aperture
domain, which will lead to fluctuations of the absolute value
of the system functions over the aperture. This behavior is
dual1 to the behavior with respect toand already described
in Section II-A and sketched in Fig. 3. According to that,
the denotations and relations from Fig. 1 can be extended to
directional time-variant channels in the consistent way given
in Fig. 4. Equation (4) reveals that strictly speaking there is a
Fourier transform with respect to rather than with respect
to . For the resolution of components this will lead to ambi-
guities of the angle for values of outside ,
due to the ambiguity of the -function.

At this point, some interesting conclusions can already be
drawn. In the literature on mobile radio channel measurements
and modeling there has not always been a strict distinction be-
tween time and space, since both are related by the velocity
of the mobile station. Some authors have treated the mobile
radio channel generally as being space-variant, some generally
as time-variant and some have considered the channel to be both.
From the fact that the signals transmitted over the channel are
time-variant and also from the fact that Bello’s description orig-
inally has been established for time-variant channels [7], this
interpretation may be preferable [1]. Having a closer look at
the system functions for directional channels and their relations
given in Fig. 4, now there is a clear distinction between time

and space , with the time being related to the Doppler do-
main and the space (i.e., the aperture—which actually lies in
the spatial domain) being related to the angular domain, each
by Fourier transforms. This also means that now there is a clear
distinction between angle of incidence of the multipath compo-
nents and their Doppler shift, which can overcome the problem
that the angle of incidence can no longer be identified from
the Doppler shift for a channel with moving scatterers. In other
words, multipath components with different angles of incidence
cause space-variant fluctuations over the aperture even for a
time-invariant channel (i.e., fixed mobile station and scatterers),
whereas Doppler shifts occur even for a nondirectional channel
if the channel is time-variant due to a moving mobile station or
moving scatterers.

From the duality between the time-Doppler relation, the fre-
quency-delay relation and the aperture-angle relation described
before and illustrated in Fig. 3, the relations for WSSUS chan-
nels described in Section II-A can be extended straightforwardly

1The terms “dual” or “duality” for such analogies in different domains or
functions have already been used by Bello in [7] and discussed in more detail
in [9].
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Fig. 3. Superposition and resolution of multipath components in the different domains of directional time-variant channels.

for directional time-variant channels. Since WSSUS channels
show uncorrelated scattering with respect toand a direc-
tional WSSUS channel has to show uncorrelated scattering with
respect to , and . Thus, for a directional WSSUS channel
equation (2) has to be extended as

(6)

with consequently being denoted asdelay-angle
cross-power spectral density. It has to be noted that due
to the aforementioned ambiguity of, (6) is valid only in
ranges of extent with ;

, where different power
spectral density functions occur in the different ranges. In
practice, however, due to the fact that , only the two
cases and (and, thus, two different power spectral
density functions) need to be considered.

Since uncorrelated scattering with respect tois equivalent
to wide sense stationarity with respect to[1], [7], uncorrelated

scattering with respect towill result in wide sense stationarity
with respect to , and, thus, (1) will become

(7)

for a directional WSSUS channel, with
being thetime-frequency-aperture correlation function. In the
same manner as for (nondirectional) WSSUS channels in [7],
[1], the other six correlation functions of a directional WSSUS
channel as well as their relations could be derived. However,
they can as well be formulated straightforwardly from the
dualities described before and, thus, the complete derivations
may be omitted here. It turns out that the eight “correlation
functions” are related by Fourier transforms as given in Fig. 5.2

Note again that in strict sense only is a correlation function,
whereas , , , , , and are power spectral
densities.

2A similar figure has been presented in [10] to outline the relations between
correlation functions of a directional channel. However, in [10] different but
quite meaningful denotations have been used, whereas in Fig. 5 it is attempted
to find consistent extensions of Bello’s denotations [7].
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Fig. 4. System functions for time-variant directional channels and their relations by Fourier transforms.

Fig. 5. Correlation functions for time-variant directional WSSUS channels and their relations by Fourier transforms.

The so-called ADPS [3] , which (from extending
the nomenclature in [7] to directional channels) should have
rather been denoted as delay-angle power density spectrum, is
frequently considered in context with directional channel mod-
eling. This function results as a special case of the delay-angle
cross-power spectral density for or
alternatively by integrating the directional scattering function

over . It is, thus, the directional pendant to the
delay power density spectrum , which has frequently been
denoted as “power delay profile” (PDP) [3] in the literature and
results from the delay cross-power spectral density
for or alternatively by integrating the scattering
function over [1]. Since (and, thus,
the ADPS) is related (see Fig. 5) to the time-frequency-aperture
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correlation function by a Fourier transform,
the ADPS contains an information about the correlation that
occurs with respect to and (since ), but it contains no
information on actual values occurring in the system functions,
as already mentioned in the introduction. Similar to the PDP
for nondirectional channels, the ADPS can be interpreted
as a kind of “temporally averaged power profile.” For many
applications, such a temporally averaged channel description
may be sufficient. In all other cases, the model has to be
extended by explicitly modeling the small-scale and large-scale
variations of the system functions either by statistical means or
by actually moving the mobile station in the geometry-based
stochastic model in [3], [4].

III. M ODELING APPROACH

A. Basic Considerations

As already mentioned in Section I, a widespread and
well-accepted mobile radio channel model is the description
of temporal variations in the time-variant impulse response
by the statistical distribution of amplitude and phase values of
the “paths.” Consequently, for directional channels it is often
proposed (e.g., in [5], [6]) to model the temporal variations of
the time-variant angle-resolved impulse response by statistical
distribution functions. However, as mentioned before, a wide-
band statistical modeling of temporal variations in the impulse
response is questionable due to its ability to resolve more and
more multipath components with increasing bandwidth. If the
components are now additionally resolved with respect to their
angles of incidence, the number of superimposing components
is even less than for the nonangle-resolved case. Since a
modeling by statistical distribution functions demands for a
superposition of a great number of components, a statistical
modeling of temporal variations then becomes even more ques-
tionable. Furthermore, since it depends on the bandwidth which
multipath components actually superimpose, the parameters of
the model are bandwidth dependent.

Basically, each of the system functions is equivalently
applicable for modeling. Taking into account the properties
of the system functions with respect to the different domains,
which have been illustrated in Fig. 3, it turns out that only in
the time-frequency-aperture domain there is a superposition of
multipath components with respect to all three quantities (,

and ), whereas for all other domains there is a resolution
of components with respect to at least one quantity (, or

). Thus, the system function in the time-frequency-aperture
domain, i.e., the time- and aperture-variant transfer function

obviously is the most appropriate system function
for statistical modeling. The time- and aperture-variant transfer
function is the counterpart for directional channels
to the time-variant transfer function for nondirectional
channels. Statistical modeling of , thus, can be
regarded as a consistent extension of the approach in [1] to
directional channels.

The strongest argument why to prefer for statis-
tical modeling has already been given before: Since both with
respect to , and there is a superposition of components,
at each point in the time-frequency-aperture domain the value

of will consist of the superposition ofall multipath
components and, thus, the maximum available number, which
in practice will be enough to permit a statistical modeling. Due
to the fact that ateachpoint all components superimpose, the
parameters will even be independent of the extent of
with respect to, and , as far as large-scale effects (i.e., shad-
owing and frequency- or distance-dependence of path-loss) are
not taken into account.

Another, more intuitive argument is closely related to the first
one: Due to the great number of superimposing components a
graphically displayed time- and aperture-variant transfer func-
tion looks like a “random function,” whereas all the other func-
tions look somewhat more deterministic [1]. This can be illus-
trated by Figs. 6 and 7, which show the absolute value of the
time- and aperture-variant transfer function at a fixed point on
the aperture and at a fixed instant, respectively, for a measure-
ment in indoor-environment with a synthetic aperture of 1.1 m
and three persons acting as moving scatterers. Due to the lim-
ited dimensions in graphical display, it is not possible to show
the entire time- and aperture-variant transfer function in one
graph; however, it is obvious that especially the “random-like”
behavior will not change fundamentally for other points in time
or space. In strict sense the system functions (or at least one
realization) are actually deterministic, otherwise it would not
be possible to simulate a mobile radio channel by determin-
istic means (e.g., ray-tracing). Since it is not possible to ex-
actly determine all mechanisms and parameters for a mobile
radio channel, there will of course always be great number of
“unknown” components, which can be treated to be random.
However, the actual reason why the time- and aperture-variant
transfer function looks “random-like” is the superposition of a
great number of (deterministic) components.

The third argument is based on the fact that the statistical
distribution functions usually taken into account for modeling
(i.e., Rayleigh-, Rice-, or Nakagami-distribution) originally
have been applied to narrowband modeling. They have been
derived from measurements of the time-selective fading
for CW signals, i.e., for signals with zero bandwidth. This
time-dependent behavior can be found as a 2-D slice of the
time-variant transfer function at the respective frequency of the
CW signal and, thus, a modeling of the transfer function rather
than the impulse response would be theconsistentextension
from narrowband statistical modeling to wideband statistical
modeling. From the duality relations described in Section II-B,
the counterpart to “zero bandwidth” would be “zero aperture
extent.” An aperture of extent zero can be identified with a
point source, which has an omnidirectional radiation pattern
and, thus, describes the nondirectional case. Extending the
aperture will result in directional behavior and, thus, a statistical
modeling of the time- and aperture-variant transfer function
obviously can be regarded as theconsistentextension from
narrowband nondirectional modeling to wideband directional
modeling. This can intuitively be interpreted as using several
conventional narrowband models for adjacent frequencies at
each point on the aperture.

The fourth argument directly results from the duality rela-
tions: Due to the time-frequency duality [7], [9], the methods
and distribution functions usually applied to statistical modeling
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Fig. 6. Time-variant transfer function at a fixed point on the aperture.

Fig. 7. Aperture-variant transfer function at a fixed point in time.

of the time-selective fading can (and should) be applied as well
to the frequency-selective fading. For directional channels the
duality can be extended to “time-frequency-aperture duality,”
since an analogous behavior occurs with respect to the aper-
ture as for time and frequency (see Fig. 3). According to that,
the behavior with respect to the aperture can meaningfully be
denoted as “aperture-selective fading,” which consequently can

(and should) be modeled by the same means as the time-selec-
tive fading.

B. Proposed Approach

A statistical modeling of the time- and aperture-variant
transfer function initially would demand for a three-dimen-
sional (3-D) joint probability density function. However, the
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approach simplifies, if statistically independent random values
are used, since then the joint probability density function can
be expressed by the product of the density functions for the
time-selective fading, the frequency-selective fading and the
aperture-selective fading. From the time-frequency-aperture
duality, it can be expected that the distribution functions
usually applied for the time-selective fading (i.e., Rayleigh-,
Rice-, or Nakagami-distribution) are as well applicable for the
frequency-selective fading and the aperture-selective fading.

When using statistically independent random values they
are also uncorrelated, which means that initially there is
no correlation between adjacent (statistically generated)
values of the time- and aperture-variant transfer function.
This results in a time-frequency-aperture correlation function

with the shape of a 3-D -function. The
3-D Fourier transform yields a directional scattering function

that is constant for all values of, and , that
means, we have a 3-D white process. A white process can be
colored by filtering and, thus, in this case, the correlation can
be induced straightforwardly by multiplying with a directional
scattering function that describes the desired correlation proper-
ties of the channel. In fact, this may be regarded as a consistent
extension of a method known from narrowband nondirectional
statistical models, where the correlation of adjacent values in
time is achieved by filtering with appropriate Doppler spectra
(e.g., Jakes’ spectrum).

The directional scattering function used for the filtering could
be generated either purely statistically or purely deterministi-
cally; it can also be taken from measurements. Another very
attractive way would be the generation of the directional scat-
tering function from the geometry-based stochastic model de-
scribed in [3], [4], since in fact the directional scattering func-
tion is a generalization of the ADPS, as becomes obvious from
the description in Section II-B. Due to the ambiguity of, which
has been mentioned in Section II-B, different directional scat-
tering functions for different ranges have to be used if the angle
exceeds the range .

IV. CONCLUSION

In the first part of the paper, a directional extension of the
channel description by means of system and correlation func-
tions, as known from Bello’s frequently cited paper [7], was
briefly described. By introducing the angular domain and the
aperture domain, which are related by Fourier transform, it is
possible to apply certain relations that have already been pointed
out by Bello (e.g., WSSUS or the duality relations) straightfor-
wardly to the directional channel description. The extension is
consistent with the nondirectional case, since this case is in-
cluded for an aperture of zero extent, which can be identified
as a point source with an omnidirectional radiation pattern. The
distinction between time and space (i.e., the aperture) further
helps to overcome the questions if, why or when a mobile radio
channel should rather be interpreted to be time-variant or space-
variant. It can further be expected that the described extension
may have even more applications and may help to solve more
questions than those in the present paper.

The directional extension of Bello’s system and correlation
functions has been used in the present paper to apply the ideas
in [1] to the statistical modeling of small-scale fading effects
in directional channels. The major advantage of the described
approach is that it copes with the demand for a great number
of superimposing components as the basis for statistical mod-
eling. But also for other reasons, which have been discussed
in the present paper, the approach is preferable to the usual
approach based on the time-variant impulse response. The ap-
proach described in the present paper can be combined with or
refine other approaches, for example by the use of directional
scattering functions generated by the geometry-based stochastic
model in [3], [4].

The description in the present paper intentionally has been
kept on a more general and, thus, more universal level. For the
application on a certain type of channel, the distribution func-
tions and parameters can readily be determined from appro-
priate measurements by the same means as already used e.g.,
for nondirectional indoor radio channels in [1], [11], [12]. The
description has also been confined to the modeling of small-
scale fading. However, taking into account the duality relations,
large-scale fading effects can be incorporated in the model quite
easily by superimposing large-scale fading both on the small-
scale time-selective, frequency-selective and aperture-selective
fading. This allows a modeling of effects like e.g., shadowing
of moving scatterers, mobile stations or shadowing of parts of
the aperture. Finally, it has to be noted that the description has
been confined to the azimuth angle at, e.g., the base station. It
can however straightforwardly be extended in the same manner
by the elevation angle and also by the angles at the mobile sta-
tion, which then yields further domains in which there is either
a resolution of multipath components with respect to the angle
or a superposition with respect to the aperture.

ACKNOWLEDGMENT

The author would like to thank Prof. H. Früchting and Dr. F.
Layer for valuable discussions and careful reading of the man-
uscript.

REFERENCES

[1] R. Kattenbach, “Characterization of time-variant indoor radio channels
by means of their system and correlation functions,” Ph.D. dissertation
(in German), Univ. Kassel, Shaker Verlag, Aachen, Germany, 1997.

[2] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport, and J. H. Reed,
“Overview of spatial channel models for antenna array communication
systems,”IEEE Pers. Commun. Mag., pp. 10–22, Feb. 1998.

[3] L. M. Correia, Ed., Wireless Flexible Personalised Communi-
cations—COST 259: European Co-Operation in Mobile Radio
Research. Chichester: Wiley, 2001.

[4] J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel model for mobile
radio systems with smart antennas,”Proc. Inst. Elect. Eng.–Radar Sonar
Navigation, vol. 145, pp. 32–41, Feb. 1998.

[5] A. Klein and W. Mohr, “A statistical wideband mobile radio channel
model including the directions-of-arrival,” inProc. IEEE 4th Int. Symp.
Spread Spectrum Techniques & Applications (ISSSTA’96), Mainz, Ger-
many, Sept. 22–25, 1996, pp. 102–106.

[6] R. Heddergott, U. P Bernhard, and B. H. Fleury, “Stochastic radio
channel model for advanced indoor mobile communication systems,”
in Proc. 8th IEEE Int. Symp. Personal, Indoor and Mobile Radio
Communications (PIMRC’97), Helsinki, Finland, Sept. 1–4, 1997, pp.
140–144.

[7] P. A. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans.Commun. Syst., vol. CS-11, pp. 360–393, Dec. 1963.



592 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 3, APRIL 2002

[8] J. D. Kraus,Antennas. New York: McGraw-Hill, 1988.
[9] P. A. Bello, “Time-frequency duality,”IEEE Trans. Inform. Theory, vol.

IT-10, pp. 18–33, Jan. 1964.
[10] R. S. Thomä, D. Hampicke, A. Richter, G. Sommerkorn, A. Schneider,

and U. Trautwein, “Identification of time-variant directional mobile
radio channels,” in9th Virginia Tech Symp. Wireless Personal Commu-
nications, Blacksburg, VA, June 2–4, 1999, pp. 11–22.

[11] R. Kattenbach and T. Englert, “Investigations of short term statistical
distributions for path amplitudes and phases in indoor environment,” in
Proc. 48th IEEE Vehicular Technology Conf. (VTC’98), Ottawa, Canada,
May 18–21, 1998, pp. 2114–2118.

[12] T. Englert, “Modeling of the indoor mobile radio channel: Approaches
for an alternative modeling,” Ph.D. dissertation (in German), Univ.
Kassel, Shaker Verlag, Aachen, Germany, 2000.

Ralf Kattenbach (M’98) was born in Siegen, Ger-
many in October 1962. He received the Dipl.-Ing. de-
gree in electrical engineering from the University of
Siegen in 1990 and the Dr.-Ing. degree (Ph.D.) from
the University of Kassel in 1997 (with distinction).

From 1990 to 1991, he worked as a research
assistant at the University of Siegen in the field
of real-time digital image processing. Since 1991,
he has been with the Department of RF-Tech-
niques/Communication Systems at the University of
Kassel, working as a research and teaching assistant

on digital signal processing for AM-transmitters, on road transport telematics
and on indoor mobile radio channels. Since 1996, he has had a part-time
lectureship on time-variant radio channels at the University of Kassel. In
1998, he was awarded the “VDI-Preis Nordhessen” for his doctoral thesis.
Since 1999, he has been a member of the VDE/ITG Technical Committee 9.1
“Measurements in Communications.” He has also participated in the European
actions COST 259 and COST 273 since 1997. His current research interests
are measurements and modeling of time-variant radio channels in indoor
environment.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


